Solveeit Logo

Question

Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles

Find sinx2,cosx2andtanx2forcosx=12forcosx=13,sin \frac{x}{2},\,cos \frac{x}{2} \,and \,tan\frac{ x}{2}\, for \,cos x=-\frac{1}{2} \,for\,cosx=-\frac{1}{3}, in quadrant III.

Answer

Here, x is in quadrant III. π<x<3π2{\pi}<x<\frac{3\pi}{2}

i.e., =π2<x2<3π4=\frac{\pi}{2}<\frac{x}{2}<\frac{3\pi}{4}

Therefore, cosx2and,tanx2andtanx2arenegative,whereassinx2ispositive.cos\frac{x}{2}\,and\,,tan\frac{x}{2}\,and\,tan\frac{x}{2}\,are\,negative\,,whereas\,sin\frac{x}{2}\,is\,positive.

it is given that cosx=13.cos x=-\frac{1}{3}.

sin2x2=1cosx2sin^2\frac{x}{2}=\frac{1-cosx}{2}

sin2x2=1(13)2=(1+13)2=432=23sin2\frac{x}{2}=\frac{1-(-\frac{1}{3})}{2}=\frac{(1+\frac{1}{3})}{2}=\frac{\frac{4}{3}}{2}=\frac{2}{3}

sinx2=23[sinx2ispositive]sin\frac{x}{2}=\frac{\sqrt2}{\sqrt3}\,[sin\frac{x}{2}\,is \,positive]

sinx2=23×33=63sin\frac{x}{2}=\frac{\sqrt2}{\sqrt3}×\frac{\sqrt3}{\sqrt3}=\frac{\sqrt6}{\sqrt3}

Now, cosx=2cos2x21cosx=2cos^2\frac{x}{2}-1

=cos2x2=1+cosx2=1+(13)2=(312)2=(23)2=13=cos^2\frac{x}{2}=\frac{1+cosx}{2}=\frac{1+(-\frac{1}{3})}{2}=\frac{(\frac{3-1}{2})}{2}=\frac{(\frac{2}{3})}{2}=\frac{1}{3}

=cosx2=13[cosx2isnegative]=cos\frac{x}{2}=-\frac{1}{\sqrt3}\,[cos\frac{x}{2}\,is\,negative]

=cosx2=13×33=33=cos\frac{x}{2}=-\frac{1}{\sqrt3}×\frac{\sqrt3}{\sqrt3}=\frac{\sqrt3}{3}

tanx2=sinx2cosx2=(23)(13)=2tan\frac{x}{2}=\frac{sin\frac{x}{2}}{cos\frac{x}{2}}=\frac{(\frac{\sqrt2}{\sqrt3})}{(\frac{-1}{\sqrt3})}=-{\sqrt2}

Thus, the respective values of sinx2,cosx2andtanx2are63,33,and2sin\frac{x}{2},cos\frac{x}{2}and\,tan\frac{x}{2}\,are\,\frac{\sqrt6}{3},\frac{-\sqrt3}{3},\,and-{\sqrt2}