Solveeit Logo

Question

Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles

Find sinx2,cosx2andtanx2forsinx=14sin \frac{x}{2},\,cos \frac{x}{2} \,and \,tan\,\frac{ x}{2}\, for \,sin\,\,x=\frac{1}{4} in quadrant II.

Answer

Here, x is in quadrant II.

i.e., π2<x<π\frac{\pi}{2}<x<{\pi}

π4<x2<π2⇒\frac{\pi}{4}<\frac{x}{2}<\frac{\pi}{2}

Therefore, sinx2and,cosx2andtanx2areallpositive.sin\frac{x}{2}\,and\,,cos\frac{x}{2}\,and\,\,tan\frac{x}{2}\,are\,all\,positive.

it is given that sinx=14.sin x=-\frac{1}{4}.

cos2x=1sin2x=1(14)2=1116=1516cos^2x=1-sin^2x=1-(\frac{1}{4})^2=1-\frac{1}{16}=\frac{15}{16}

cosx=154⇒cosx=-\frac{\sqrt15}{4} [cos x is negative in quadrant II]

sin2x2=1cosx2=1(154)2=4+158sin^2\frac{x}{2}=\frac{1-cosx}{2}=\frac{1-(-\frac{\sqrt15}{4})}{2}=\frac{4+{\sqrt15}}{8}

sinx2=4+158[sinx2ispositive]⇒sin\frac{x}{2}=\sqrt\frac{4+\sqrt15}{8}\,[∴\,sin\frac{x}{2}\,is\,positive]

=4+158×22=\sqrt\frac{4+\sqrt15}{8}×\frac{2}{2}

=8+21516=\sqrt\frac{8+2\sqrt15}{16}

=8+2154=\sqrt\frac{8+2\sqrt15}{4}

cos2x2=1+cosx2=1+(154)2=4158cos^2\frac{x}{2}=\frac{1+cosx}{2}=\frac{1+(-\frac{\sqrt15}{4})}{2}=\frac{4-\sqrt15}{8}

cosx2=4158[sinx2ispositive]⇒cos\frac{x}{2}=\sqrt\frac{4-\sqrt15}{8}\,\,\,[∴\,sin\frac{x}{2}\,is\,positive]

=4158×22=\sqrt\frac{4-\sqrt15}{8}×\frac{2}{2}

=821516=\sqrt\frac{8-2\sqrt15}{16}

=82154=\sqrt\frac{8-2\sqrt15}{4}

tanx2=sinx2cosx2=(8+2154)(82154)=8+2158215tan\frac{x}{2}=\frac{sin\frac{x}{2}}{cos\frac{x}{2}}=\frac{(\frac{\sqrt8+2\sqrt15}{4})}{(\frac{\sqrt8-2\sqrt15}{4})}=\frac{\sqrt8+2\sqrt15}{\sqrt8-2\sqrt15}

8+2158215×8+2158+215\sqrt\frac{8+2\sqrt15}{8-2\sqrt15}×\frac{8+2\sqrt15}{8+2\sqrt15}

=(8+215)26460=8+2152=4+15=\sqrt\frac{(8+2\sqrt15)^2}{64-60}=\frac{8+2\sqrt15}{2}=4+\sqrt15

Thus, the respective values of sinx2,cosx2andtanx2are8+2154,82154and4+15.sin\frac{x}{2},cos\frac{x}{2}\,and\,\,tan\frac{x}{2}\,are\,\frac{\sqrt8+2\sqrt15}{4},\frac{\sqrt8-2\sqrt15}{4}\,and\,\,4+\sqrt15.