Question
Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles
Find sin2x,cos2xandtan2xforsinx=41 in quadrant II.
Answer
Here, x is in quadrant II.
i.e., 2π<x<π
⇒4π<2x<2π
Therefore, sin2xand,cos2xandtan2xareallpositive.
it is given that sinx=−41.
cos2x=1−sin2x=1−(41)2=1−161=1615
⇒cosx=−415 [cos x is negative in quadrant II]
sin22x=21−cosx=21−(−415)=84+15
⇒sin2x=84+15[∴sin2xispositive]
=84+15×22
=168+215
=48+215
cos22x=21+cosx=21+(−415)=84−15
⇒cos2x=84−15[∴sin2xispositive]
=84−15×22
=168−215
=48−215
tan2x=cos2xsin2x=(48−215)(48+215)=8−2158+215
8−2158+215×8+2158+215
=64−60(8+215)2=28+215=4+15
Thus, the respective values of sin2x,cos2xandtan2xare48+215,48−215and4+15.