Solveeit Logo

Question

Question: Find \(\sin \dfrac{x}{2},\;\cos \dfrac{x}{2}\;{\text{and}}\,\tan \dfrac{x}{2}\) if \(\tan x = \dfrac...

Find sinx2,  cosx2  andtanx2\sin \dfrac{x}{2},\;\cos \dfrac{x}{2}\;{\text{and}}\,\tan \dfrac{x}{2} if tanx=44\tan x = \dfrac{{ - 4}}{4} also given that x2ndx \in 2{\text{nd}} quadrant.

Explanation

Solution

To find the given trigonometric functions, first find value of tangent function with help of half angle formula of tangent. And then we will use trigonometric identity consisting of secant and tangent by which we will get the value of secant and eventually cosine. And at last use sine and cosine trigonometric identity to get the value of sine function.

Formula used:
Area of the trapezium =12(a+b)×h\dfrac{1}{2}\left( a+b \right)\times h, where ‘a’ and ‘b’ are the two parallel sides and ‘h’ is the height is of the trapezium.

Complete step by step solution:
In order to find values of sinx2,  cosx2  andtanx2\sin \dfrac{x}{2},\;\cos \dfrac{x}{2}\;{\text{and}}\,\tan \dfrac{x}{2} if tanx=44\tan x = \dfrac{{ - 4}}{4} and xx is in second quadrant which means interval of x  is  [π2,  π]x\;{\text{is}}\;\left[ {\dfrac{\pi }{2},\;\pi } \right] we first find the value of tangent function using its half angle formula as follows
Given
tanx=44 tanx=1  \Rightarrow \tan x = \dfrac{{ - 4}}{4} \\\ \Rightarrow \tan x = - 1 \\\
We know that, tanx=2tanx2tan2x2\tan x = \dfrac{{2\tan \dfrac{x}{2}}}{{{{\tan }^2}\dfrac{x}{2}}}
2tanx2tan2x2=1 2tanx2=tan2x2 2tanx2+tan2x2=0 tanx2(2+tanx2)=0 tanx2=0  and  tanx2=2  \Rightarrow \dfrac{{2\tan \dfrac{x}{2}}}{{{{\tan }^2}\dfrac{x}{2}}} = - 1 \\\ \Rightarrow 2\tan \dfrac{x}{2} = - {\tan ^2}\dfrac{x}{2} \\\ \Rightarrow 2\tan \dfrac{x}{2} + {\tan ^2}\dfrac{x}{2} = 0 \\\ \Rightarrow \tan \dfrac{x}{2}\left( {2 + \tan \dfrac{x}{2}} \right) = 0 \\\ \Rightarrow \tan \dfrac{x}{2} = 0\;{\text{and}}\;\tan \dfrac{x}{2} = - 2 \\\
But, it is given in the question that x2ndx \in 2{\text{nd}} quadrant, and for tanx2=0\tan \dfrac{x}{2} = 0 value of xx will lie outside the second quadrant.
Therefore tanx2=2\tan \dfrac{x}{2} = - 2 is one of the required values
Now, we know that, sec2x=1+tan2xsecx=1+tan2x{\sec ^2}x = 1 + {\tan ^2}x \Rightarrow \sec x = \sqrt {1 + {{\tan }^2}x} using this, we will get
secx2=±1+tan2x2 secx2=±1+(2)2 secx2=±1+4 secx2=±5  \Rightarrow \sec \dfrac{x}{2} = \pm \sqrt {1 + {{\tan }^2}\dfrac{x}{2}} \\\ \Rightarrow \sec \dfrac{x}{2} = \pm \sqrt {1 + {{( - 2)}^2}} \\\ \Rightarrow \sec \dfrac{x}{2} = \pm \sqrt {1 + 4} \\\ \Rightarrow \sec \dfrac{x}{2} = \pm \sqrt 5 \\\
We are getting here two values, positive and negative but we know that cosine and secant functions are negative in the given second quadrant, but x2\dfrac{x}{2} lies in first quadrant and in first quadrant all function are positive.

secx2=5\Rightarrow \sec \dfrac{x}{2} = \sqrt 5
Also from trigonometric relations, we know that cosx=1secx\cos x = \dfrac{1}{{\sec x}}
cosx2=1secx2 cosx2=15  \Rightarrow \cos \dfrac{x}{2} = \dfrac{1}{{\sec \dfrac{x}{2}}} \\\ \Rightarrow \cos \dfrac{x}{2} = \dfrac{1}{{\sqrt 5 }} \\\
Now, from the trigonometric identity between sine and cosine, we know that sin2x=1cos2xsinx=1cos2x{\sin ^2}x = 1 - {\cos ^2}x \Rightarrow \sin x = \sqrt {1 - {{\cos }^2}x}
sinx2=±1cos2x2 sinx2=±1(15)2 sinx2=±115 sinx2=±515 sinx2=±45 sinx2=±25  \Rightarrow \sin \dfrac{x}{2} = \pm \sqrt {1 - {{\cos }^2}\dfrac{x}{2}} \\\ \Rightarrow \sin \dfrac{x}{2} = \pm \sqrt {1 - {{\left( {\dfrac{1}{{\sqrt 5 }}} \right)}^2}} \\\ \Rightarrow \sin \dfrac{x}{2} = \pm \sqrt {1 - \dfrac{1}{5}} \\\ \Rightarrow \sin \dfrac{x}{2} = \pm \sqrt {\dfrac{{5 - 1}}{5}} \\\ \Rightarrow \sin \dfrac{x}{2} = \pm \sqrt {\dfrac{4}{5}} \\\ \Rightarrow \sin \dfrac{x}{2} = \pm \dfrac{2}{{\sqrt 5 }} \\\
Again we are getting here two values, but we know that sine is positive in first ,second quadrant,
Therefore sinx2=25\sin \dfrac{x}{2} = \dfrac{2}{{\sqrt 5 }} is the required answer.

Note: In trigonometric problems like this, when finding solutions for a particular given interval then make sure to check the polarity (either positive or negative) of functional values of trigonometric functions in that interval.