Solveeit Logo

Question

Question: Find remainder in 4^2022/15...

Find remainder in 4^2022/15

Answer

1

Explanation

Solution

We need to compute 42022mod154^{2022} \mod 15.

Step 1:
Note that:

42=161(mod15)4^2 = 16 \equiv 1 \pmod{15}

Step 2:
Since 4214^2 \equiv 1, we can write:

42022=(42)1011110111(mod15)4^{2022} = (4^2)^{1011} \equiv 1^{1011} \equiv 1 \pmod{15}

The remainder when 420224^{2022} is divided by 15 is 1.

Since 421mod154^2 \equiv 1 \mod 15, write 42022=(42)10114^{2022}=(4^2)^{1011} so that 42022110111mod154^{2022}\equiv 1^{1011}\equiv 1 \mod 15.