Question
Question: Find remainder in 2021^3762 / 17...
Find remainder in 2021^3762 / 17
Answer
4
Explanation
Solution
Solution:
-
Reduce the Base Modulo 17:
2021≡2021−17×118=2021−2006=15(mod17)So, 20213762≡153762(mod17).
-
Express in Simpler Form:
Notice that 15≡−2(mod17). Therefore,
153762≡(−2)3762(mod17)Since the exponent is even,
(−2)3762=23762 -
Apply Fermat's Little Theorem:
For prime 17, Fermat's Little Theorem gives
216≡1(mod17)Reduce the exponent modulo 16:
3762mod16=3762−16×235=3762−3760=2.Thus,
23762≡22≡4(mod17)
Final Answer: The remainder when 20213762 is divided by 17 is 4.
Explanation (Minimal):
Reduce 2021 modulo 17 to get 15. Write 15 as −2 modulo 17. Since exponent is even, compute 23762. Using Fermat’s theorem, reduce exponent modulo 16 to get 22=4.