Solveeit Logo

Question

Question: Find remainder in 2021^3762 / 17...

Find remainder in 2021^3762 / 17

Answer

4

Explanation

Solution

Solution:

  1. Reduce the Base Modulo 17:

    2021202117×118=20212006=15(mod17)2021 \equiv 2021 - 17 \times 118 = 2021 - 2006 = 15 \pmod{17}

    So, 20213762153762(mod17)2021^{3762} \equiv 15^{3762} \pmod{17}.

  2. Express in Simpler Form:

    Notice that 152(mod17)15 \equiv -2 \pmod{17}. Therefore,

    153762(2)3762(mod17)15^{3762} \equiv (-2)^{3762} \pmod{17}

    Since the exponent is even,

    (2)3762=23762(-2)^{3762} = 2^{3762}
  3. Apply Fermat's Little Theorem:

    For prime 1717, Fermat's Little Theorem gives

    2161(mod17)2^{16} \equiv 1 \pmod{17}

    Reduce the exponent modulo 16:

    3762mod16=376216×235=37623760=2.3762 \mod 16 = 3762 - 16 \times 235 = 3762 - 3760 = 2.

    Thus,

    23762224(mod17)2^{3762} \equiv 2^2 \equiv 4 \pmod{17}

Final Answer: The remainder when 202137622021^{3762} is divided by 17 is 4.


Explanation (Minimal):

Reduce 2021 modulo 17 to get 15. Write 15 as 2-2 modulo 17. Since exponent is even, compute 237622^{3762}. Using Fermat’s theorem, reduce exponent modulo 16 to get 22=42^2 = 4.