Solveeit Logo

Question

Question: Find remainder in [ 127^97 + 97^97 ]/3...

Find remainder in [ 127^97 + 97^97 ]/3

Answer

2

Explanation

Solution

Solution:

  1. Compute modulo 3 residues:

    1271(mod3)and971(mod3).127 \equiv 1 \pmod{3} \quad \text{and} \quad 97 \equiv 1 \pmod{3}.
  2. Raise to the 97th power:

    127971971(mod3)and97971971(mod3).127^{97} \equiv 1^{97} \equiv 1 \pmod{3}\quad \text{and}\quad 97^{97} \equiv 1^{97} \equiv 1 \pmod{3}.
  3. Sum them:

    12797+97971+12(mod3).127^{97} + 97^{97} \equiv 1 + 1 \equiv 2 \pmod{3}.
  4. Thus, the remainder when dividing by 3 is 2.