Solveeit Logo

Question

Question: Find real \[\theta \] for which complex number \[\dfrac{{1 + i\cos \theta }}{{1 - 2i\cos \theta }}\]...

Find real θ\theta for which complex number 1+icosθ12icosθ\dfrac{{1 + i\cos \theta }}{{1 - 2i\cos \theta }} is purely real.

Explanation

Solution

Here we rationalize the given complex number by multiplying both numerator and denominator with the conjugate of the denominator of the given complex number. Then using the fact that the complex number is purely real, we equate the imaginary part to zero which gives us the required value of θ\theta .

  • In a complex number z=x+iyz = x + iy, the real part is x and the imaginary part is y.
  • If z=x+iyz = x + iyis a complex number, then conjugate of this complex number is z=xiy\overline z = x - iy
  • The value of i=1i = \sqrt { - 1} . On squaring both sides it gives i2=1{i^2} = - 1.

Complete step-by-step answer:
We are given the complex number as 1+icosθ12icosθ\dfrac{{1 + i\cos \theta }}{{1 - 2i\cos \theta }} … (1)
We take the denominator of the complex number 12icosθ1 - 2i\cos \theta .
Now we write the conjugate of the denominator.
12icosθ=1+2icosθ\overline {1 - 2i\cos \theta } = 1 + 2i\cos \theta
Now we multiply the numerator and denominator of complex number in equation (1) by 1+2icosθ1 + 2i\cos \theta
1+icosθ12icosθ×1+2icosθ1+2icosθ\Rightarrow \dfrac{{1 + i\cos \theta }}{{1 - 2i\cos \theta }} \times \dfrac{{1 + 2i\cos \theta }}{{1 + 2i\cos \theta }}
(1+icosθ)×(1+2icosθ)(12icosθ)×(1+2icosθ)\Rightarrow \dfrac{{(1 + i\cos \theta ) \times (1 + 2i\cos \theta )}}{{(1 - 2i\cos \theta ) \times (1 + 2i\cos \theta )}}
Use the formula (a+b)(ab)=a2b2(a + b)(a - b) = {a^2} - {b^2} in the denominator.
1×(1+2icosθ)+icosθ×(1+2icosθ)(1)2(2icosθ)2\Rightarrow \dfrac{{1 \times (1 + 2i\cos \theta ) + i\cos \theta \times (1 + 2i\cos \theta )}}{{{{(1)}^2} - {{(2i\cos \theta )}^2}}}
1+2icosθ+icosθ+2i2cos2θ14i2cos2θ\Rightarrow \dfrac{{1 + 2i\cos \theta + i\cos \theta + 2{i^2}{{\cos }^2}\theta }}{{1 - 4{i^2}{{\cos }^2}\theta }}
Substitute the value of i2=1{i^2} = - 1 in both numerator and denominator
1+2icosθ+icosθ+2(1)cos2θ14(1)cos2θ\Rightarrow \dfrac{{1 + 2i\cos \theta + i\cos \theta + 2( - 1){{\cos }^2}\theta }}{{1 - 4( - 1){{\cos }^2}\theta }}
1+3icosθ2cos2θ1+4cos2θ\Rightarrow \dfrac{{1 + 3i\cos \theta - 2{{\cos }^2}\theta }}{{1 + 4{{\cos }^2}\theta }}
Combine and write the real part and imaginary part separately.
(12cos2θ)+3icosθ1+4cos2θ\Rightarrow \dfrac{{(1 - 2{{\cos }^2}\theta ) + 3i\cos \theta }}{{1 + 4{{\cos }^2}\theta }}
12cos2θ1+4cos2θ+i3cosθ1+4cos2θ\Rightarrow \dfrac{{1 - 2{{\cos }^2}\theta }}{{1 + 4{{\cos }^2}\theta }} + i\dfrac{{3\cos \theta }}{{1 + 4{{\cos }^2}\theta }}
Comparing the complex number with the general complex number z=x+iyz = x + iy, where x is real part and y is imaginary part.
Here real part is 12cos2θ1+4cos2θ\dfrac{{1 - 2{{\cos }^2}\theta }}{{1 + 4{{\cos }^2}\theta }} and imaginary part is 3cosθ1+4cos2θ\dfrac{{3\cos \theta }}{{1 + 4{{\cos }^2}\theta }}
For the complex number to be purely real, the imaginary part has to be zero.
3cosθ1+4cos2θ=0\Rightarrow \dfrac{{3\cos \theta }}{{1 + 4{{\cos }^2}\theta }} = 0
Cross multiply the terms in the denominator of LHS to RHS of the equation.
3cosθ=0\Rightarrow 3\cos \theta = 0
Divide both sides of the equation by 3
3cosθ3=03\Rightarrow \dfrac{{3\cos \theta }}{3} = \dfrac{0}{3}
Cancel the same terms from numerator and denominator.
cosθ=0\Rightarrow \cos \theta = 0
We know cos90=0\cos {90^ \circ } = 0, therefore, substitute the value in RHS
cosθ=cos90\Rightarrow \cos \theta = \cos {90^ \circ }
Comparing the angles on both sides we get
θ=90\theta = {90^ \circ }.

Note: Students many times make mistakes when they try to separate the given complex number without even rationalizing it which is wrong, because a standard form of complex number does not have i in its denominator. Also, some students write the value of the imaginary part with ‘i’ along it which should be taken care of, as the imaginary part is the value except i.