Solveeit Logo

Question

Question: Find real numbers x and y if \[\left( {x - iy} \right)\left( {3 + 5i} \right)\] is a conjugate of \[...

Find real numbers x and y if (xiy)(3+5i)\left( {x - iy} \right)\left( {3 + 5i} \right) is a conjugate of 624i.1+i.1i - 6 - 24i.1 + i.1 - i

Explanation

Solution

First Find the product of the terms given and then its conjugate. Then equating the real part and complex part coefficient and then solving them will give us the required solution.

Complete step by step answer:

Given that,
624i.1+i.1i- 6 - 24i.1 + i.1 - i

(624i)(1i2) (624i)(1(1)) (624i)×2 12+48i  \Rightarrow \left( { - 6 - 24i} \right)\left( {1 - {i^2}} \right) \\\ \Rightarrow \left( { - 6 - 24i} \right)\left( {1 - \left( { - 1} \right)} \right) \\\ \Rightarrow \left( { - 6 - 24i} \right) \times 2 \\\ \Rightarrow - 12 + 48i \\\

Conjugate of 1248i - 12 - 48i is 12+48i - 12 + 48i.
Now,
(xiy)(3+5i)\left( {x - iy} \right)\left( {3 + 5i} \right)

3x+5xi3yi+5y (3x+5y)+i(5x3y)  \Rightarrow 3x + 5xi - 3yi + 5y \\\ \Rightarrow \left( {3x + 5y} \right) + i\left( {5x - 3y} \right) \\\

We have both in a+bia + bi form.
So we get,
3x+5y=123x + 5y = - 12.......equation1
5x3y=485x - 3y = 48......equation2
Solving these equations we will get values of x and y.
Multiply equation1 by 3 and equation2 by 5
(3x+5y=12)×3\Rightarrow (3x + 5y = - 12) \times 3
9x+15y=36\Rightarrow 9x + 15y = - 36….equa1.1
Now for equation2
(5x3y=48)×5\Rightarrow (5x - 3y = 48) \times 5
25x15y=240\Rightarrow 25x - 15y = 240…..equa2.1
Adding equa1.1 and equa2.1

34x=204 x=20434 x=6  \Rightarrow 34x = 204 \\\ \Rightarrow x = \dfrac{{204}}{{34}} \\\ \Rightarrow x = 6 \\\

Hence to find value of y put this value of x in any on eof the equations above
Putting it in equa2.1

25×615y=240 15015y=240 15y=150240 y=9015 y=6  \Rightarrow 25 \times 6 - 15y = 240 \\\ \Rightarrow 150 - 15y = 240 \\\ \Rightarrow 15y = 150 - 240 \\\ \Rightarrow y = \dfrac{{ - 90}}{{15}} \\\ \Rightarrow y = - 6 \\\

Thus real numbers x=6 and y=-6.

Note: Complex conjugate of a+bi is a-bi. Don’t forget to take the complex conjugate of that number. Value of i2{i^2}=-1.
Additional information: Complex numbers are of the form a+bi, where a and b are real numbers and i is the imaginary unit.
A real number if to be treated as an imaginary number it is written as a+0i.
If a number is to be treated as purely imaginary then it is written as 0+bi.