Question
Mathematics Question on Permutations
Find r if
(i) 5Pr = 26Pr-1
**(ii) **5Pr = 6Pr-1
Answer
(i) 5Pr = 26Pr-1
⇒(5−r)!5!=2×(6−r+1)!6!
⇒(5−r)!5!=2×(7−r)!6!
⇒(5−r)!5!=(7−r)(6−r)(5−r)!2×6×5!
⇒1=(7−r)(6−r)2×6
⇒(7−r)(6−r)=12
⇒42−6r−7r+r2=12
⇒r2−13r+30=0
⇒r2−3r−10r+30=0
⇒r(r−3)−10(r−3)=0
⇒(r−3)(r−10)=0
⇒(r−3)=0or(r−10)=0
⇒r=3 or r=10
nPr=(n−r)!n!, where 0≤r≤n
It is known that,
∴0≤r≤5
Hence, r=10∴r=3
(ii) 5Pr = 6Pr-1
⇒(5−r)!5!=(6−r+1)!6!
⇒(5−r)!5!=6×(7−r)!5!
⇒(5−r)!1=(7−r)(6−r)(5−r)!6
⇒1=(7−r)(6−r)6
⇒(7−r)(6−r)=6
⇒42−7r−6r+r2−6=0
⇒r2−13r+36=0
⇒r2−4r−9r+36=0
⇒r(r−4)−9(r−4)=0
⇒(r−4)(r−9)=0
⇒(r−4)=0 or (r−9)=0
⇒r=4 or r=9
nPr=(n−r)!n!, where0≤r≤n
It is known that,
0≤r≤5
Hence, r=9
∴r=4