Solveeit Logo

Question

Mathematics Question on Permutations

Find r if

(i) 5Pr = 26Pr-1

**(ii) **5Pr = 6Pr-1

Answer

(i) 5Pr = 26Pr-1

5!(5r)!=2×6!(6r+1)!⇒\frac{5!}{\left(5-r\right)!}=2\times\frac{6!}{\left(6-r+1\right)!}

5!(5r)!=2×6!(7r)!⇒\frac{5!}{\left(5-r\right)!}=2\times\frac{6!}{\left(7-r\right)!}

5!(5r)!=2×6×5!(7r)(6r)(5r)!⇒\frac{5!}{\left(5-r\right)!}=\frac{2\times6\times5!}{\left(7-r\right)\left(6-r\right)\left(5-r\right)!}

1=2×6(7r)(6r)⇒1=\frac{2\times6}{\left(7-r\right)\left(6-r\right)}
(7r)(6r)=12⇒\left(7-r\right)\left(6-r\right)=12
426r7r+r2=12⇒42-6r-7r+r^2=12
r213r+30=0⇒r^2-13r+30=0
r23r10r+30=0⇒r^2-3r-10r+30=0
r(r3)10(r3)=0⇒r\left(r-3\right)-10\left(r-3\right)=0
(r3)(r10)=0⇒\left(r-3\right)\left(r-10\right)=0
(r3)=0  or(r10)=0⇒\left(r-3\right)=0\space or \left(r-10\right)=0
r=3⇒r=3 or r=10 r=10
nPr=n!(nr)!^nP_r=\frac{n!}{\left(n-r\right)!}, where 0rn0≤r≤n
It is known that,
0r5∴0 ≤ r ≤ 5
Hence, r10r=3r \neq 10 ∴r = 3

(ii) 5Pr = 6Pr-1

5!(5r)!=6!(6r+1)!⇒\frac{5!}{\left(5-r\right)!}=\frac{6!}{\left(6-r+1\right)!}

5!(5r)!=6×5!(7r)!⇒\frac{5!}{\left(5-r\right)!}=6\times\frac{5!}{\left(7-r\right)!}

1(5r)!=6(7r)(6r)(5r)!⇒\frac{1}{\left(5-r\right)!}=\frac{6}{\left(7-r\right)\left(6-r\right)\left(5-r\right)!}

1=6(7r)(6r)⇒1=\frac{6}{\left(7-r\right)\left(6-r\right)}
(7r)(6r)=6⇒\left(7-r\right)\left(6-r\right)=6
427r6r+r26=0⇒42-7r-6r+r^2-6=0
r213r+36=0⇒r^2-13r+36=0
r24r9r+36=0⇒r^2-4r-9r+36=0
r(r4)9(r4)=0⇒r\left(r-4\right)-9\left(r-4\right)=0
(r4)(r9)=0⇒\left(r-4\right)\left(r-9\right)=0
(r4)=0⇒\left(r-4\right)=0 or (r9)=0\left(r-9\right)=0
r=4⇒r=4 or r=9r=9

nPr=n!(nr)!^nP_r=\frac{n!}{\left(n-r\right)!}, where0rn 0≤r≤n
It is known that,
0r50 ≤ r ≤ 5
Hence, r9r \neq 9
r=4∴ r = 4