Question
Question: Find Principle solution of $\sin 2x + 2 \sin x + 2 \cos x + 1 = 0$...
Find Principle solution of sin2x+2sinx+2cosx+1=0

A
4π
B
43π
C
32π
D
2π
Answer
43π
Explanation
Solution
Use sin2x=2sinxcosx to rewrite the equation as 2sinxcosx+2sinx+2cosx+1=0. Rearrange to (2sinxcosx+1)+2(sinx+cosx)=0. Recognize 1+2sinxcosx=(sinx+cosx)2. The equation becomes (sinx+cosx)2+2(sinx+cosx)=0. Let y=sinx+cosx. This gives y2+2y=0, so y(y+2)=0. Thus, y=0 or y=−2. y=0⟹sinx+cosx=0⟹tanx=−1⟹x=nπ−4π. y=−2 yields no real solutions as the range of sinx+cosx is [−2,2]. For n=1, x=43π, which is a principal solution and matches option (B).
