Solveeit Logo

Question

Question: Find Principle solution of $\sin 2x + 2 \sin x + 2 \cos x + 1 = 0$...

Find Principle solution of sin2x+2sinx+2cosx+1=0\sin 2x + 2 \sin x + 2 \cos x + 1 = 0

A

π4\frac{\pi}{4}

B

3π4\frac{3\pi}{4}

C

2π3\frac{2\pi}{3}

D

π2\frac{\pi}{2}

Answer

3π4\frac{3\pi}{4}

Explanation

Solution

Use sin2x=2sinxcosx\sin 2x = 2 \sin x \cos x to rewrite the equation as 2sinxcosx+2sinx+2cosx+1=02 \sin x \cos x + 2 \sin x + 2 \cos x + 1 = 0. Rearrange to (2sinxcosx+1)+2(sinx+cosx)=0(2 \sin x \cos x + 1) + 2(\sin x + \cos x) = 0. Recognize 1+2sinxcosx=(sinx+cosx)21 + 2 \sin x \cos x = (\sin x + \cos x)^2. The equation becomes (sinx+cosx)2+2(sinx+cosx)=0(\sin x + \cos x)^2 + 2(\sin x + \cos x) = 0. Let y=sinx+cosxy = \sin x + \cos x. This gives y2+2y=0y^2 + 2y = 0, so y(y+2)=0y(y+2)=0. Thus, y=0y=0 or y=2y=-2. y=0    sinx+cosx=0    tanx=1    x=nππ4y=0 \implies \sin x + \cos x = 0 \implies \tan x = -1 \implies x = n\pi - \frac{\pi}{4}. y=2y=-2 yields no real solutions as the range of sinx+cosx\sin x + \cos x is [2,2][-\sqrt{2}, \sqrt{2}]. For n=1n=1, x=3π4x = \frac{3\pi}{4}, which is a principal solution and matches option (B).