Question
Mathematics Question on Straight lines
Find perpendicular distance of the line joining the points (cosθ,sinθ) and (cosϕ,sinϕ) from the origin.
A
cos(2θ−ϕ)
B
cos(2θ+ϕ)
C
sin(2θ+ϕ)
D
None of these
Answer
cos(2θ−ϕ)
Explanation
Solution
Let the points be A=(cosθ,sinθ) and B=(cosϕ,sinϕ). Equation of line AB is y−sinθ=cosϕ−cosθsinϕ−sinθ(x−cosϕ) or y−sinθ=−2sin(2ϕ+θ)sin(2ϕ−θ)2cos(2θ+ϕ)sin(2ϕ−θ)(x−cosθ) or ysin(2θ+ϕ)−sinθsin(2θ+ϕ) =−xcos(2θ+ϕ)+cosθcos(2θ+ϕ) or xcos(2θ+ϕ)+ysin(2θ+ϕ) -\left\\{cos\,\theta\,cos\left(\frac{\theta +\phi }{2}\right)+sin\,\theta\,sin\left(\frac{\theta +\phi }{2}\right)\right\\}=0 or xcos(2θ+ϕ)+ysin(2θ+ϕ)−cos(θ−2θ+ϕ)=0 or xcos(2θ+ϕ)+ysin(2θ+ϕ)−cos(2θ−ϕ)=0 ∴ Perpendicular distance of line from the origin =cos2(2θ+ϕ)+sin2(2θ+ϕ)∣0+0−cos(2θ−ϕ)∣ =cos(2θ−ϕ)