Solveeit Logo

Question

Mathematics Question on Straight lines

Find perpendicular distance of the line joining the points (cosθ,sinθ)(cos \,\theta, sin \,\theta) and (cosϕ,sinϕ)(cos\, \phi, sin \,\phi) from the origin.

A

cos(θϕ2)\left|cos\left(\frac{\theta-\phi}{2}\right)\right|

B

cos(θ+ϕ2)\left|cos\left(\frac{\theta+\phi}{2}\right)\right|

C

sin(θ+ϕ2)\left|sin\left(\frac{\theta+\phi}{2}\right)\right|

D

None of these

Answer

cos(θϕ2)\left|cos\left(\frac{\theta-\phi}{2}\right)\right|

Explanation

Solution

Let the points be A=(cosθ,sinθ)A = \left(cos\, \theta, sin\, \theta\right) and B=(cosϕ,sinϕ)B = \left(cos\,\phi, sin\,\phi\right). Equation of line ABAB is ysinθ=sinϕsinθcosϕcosθ(xcosϕ)y-sin\,\theta=\frac{sin\, \phi-sin\,\theta}{cos\,\phi-cos\,\theta}\left(x-cos\,\phi\right) or ysinθ=2cos(θ+ϕ2)sin(ϕθ2)2sin(ϕ+θ2)sin(ϕθ2)(xcosθ)y-sin\,\theta=\frac{2\,cos\left(\frac{\theta+\phi}{2}\right)sin\left(\frac{\phi-\theta}{2}\right)}{-2\, sin\left(\frac{\phi+\theta}{2}\right)sin\left(\frac{\phi-\theta}{2}\right)}\left(x-cos\, \theta\right) or ysin(θ+ϕ2)sinθsin(θ+ϕ2)y\, sin\left(\frac{\theta+\phi}{2}\right)-sin\, \theta\,sin\left(\frac{\theta+\phi}{2}\right) =xcos(θ+ϕ2)+cosθcos(θ+ϕ2)=-x\,cos\left(\frac{\theta+\phi}{2}\right)+cos\,\theta\,cos\left(\frac{\theta+\phi}{2}\right) or xcos(θ+ϕ2)+ysin(θ+ϕ2)x\,cos\left(\frac{\theta +\phi }{2}\right)+y\,sin\left(\frac{\theta +\phi }{2}\right) -\left\\{cos\,\theta\,cos\left(\frac{\theta +\phi }{2}\right)+sin\,\theta\,sin\left(\frac{\theta +\phi }{2}\right)\right\\}=0 or xcos(θ+ϕ2)+ysin(θ+ϕ2)cos(θθ+ϕ2)=0x\,cos\left(\frac{\theta +\phi }{2}\right)+y\,sin\left(\frac{\theta +\phi }{2}\right)-cos\left(\theta-\frac{\theta +\phi }{2}\right)=0 or xcos(θ+ϕ2)+ysin(θ+ϕ2)cos(θϕ2)=0x\,cos\left(\frac{\theta +\phi }{2}\right)+y\,sin\left(\frac{\theta +\phi }{2}\right)-cos\left(\frac{\theta -\phi }{2}\right)=0 \therefore Perpendicular distance of line from the origin =0+0cos(θϕ2)cos2(θ+ϕ2)+sin2(θ+ϕ2)=\frac{\left|0+0-cos\left(\frac{\theta-\phi}{2}\right)\right|}{\sqrt{cos^{2}\left(\frac{\theta+\phi}{2}\right)+sin^{2}\left(\frac{\theta+\phi}{2}\right)}} =cos(θϕ2)=\left|cos\left(\frac{\theta-\phi}{2}\right)\right|