Solveeit Logo

Question

Question: Find \(\overrightarrow a \times \overrightarrow b \) and \[\left| {\overrightarrow a \times \overrig...

Find a×b\overrightarrow a \times \overrightarrow b and a×b\left| {\overrightarrow a \times \overrightarrow b } \right| if a=i^+3j^2k^\overrightarrow a = \widehat i + 3\widehat j - 2\widehat k and b=2i^+j^3k^\overrightarrow b = 2\widehat i + \widehat j - 3\widehat k.

Explanation

Solution

Use the concept of cross product or vector product of two vectors and find their product then take the modulus of resultant vector to find the value of a×b\left| {\overrightarrow a \times \overrightarrow b } \right|.

Complete step by step solution: Given two vectors,
a=i^+3j^2k^\overrightarrow a = \widehat i + 3\widehat j - 2\widehat k and b=2i^+j^3k^\overrightarrow b = 2\widehat i + \widehat j - 3\widehat k
To find the cross product and their magnitude
We know that cross product of a=a1i^+a2j^+a3k^\overrightarrow a = {a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k and b=b1i^+b2j^+b3k^\overrightarrow b = {b_1}\widehat i + {b_2}\widehat j + {b_3}\widehat k is equal to

{\widehat i}&{\widehat j}&{\widehat k} \\\ {{a_1}}&{{a_2}}&{{a_3}} \\\ {{b_1}}&{{b_2}}&{{b_3}} \end{array}} \right)$$ On opening the determinant we get, $$\overrightarrow a \times \overrightarrow b = \widehat i({a_2}{b_3} - {b_2}{a_3}) - \widehat j({a_1}{b_3} - {b_1}{a_3}) + \widehat k({a_1}{b_2} - {b_1}{a_2})$$ Now put the value of vector a and vector b in above formula We get, $$\overrightarrow a \times \overrightarrow b = \left( {\begin{array}{*{20}{c}} {\widehat i}&{\widehat j}&{\widehat k} \\\ 1&3&{ - 2} \\\ 2&1&{ - 3} \end{array}} \right)$$ $$\overrightarrow a \times \overrightarrow b = \widehat i[3 \bullet \left( { - 3} \right) - 1 \bullet \left( { - 2} \right)] - \widehat j[1 \bullet \left( { - 3} \right) - 2 \bullet \left( { - 2} \right)] + \widehat k[1 \bullet 1 - 2 \bullet 3]$$ On simplification, $$\overrightarrow a \times \overrightarrow b = - 7i - \widehat j - 5\widehat k$$ Now we have to find the modulus or magnitude of $\overrightarrow a \times \overrightarrow b $ We know that $$\left| {\overrightarrow a } \right| = \sqrt {{a^2}_1 + {a^2}_2 + {a^2}_3} $$ of a vector $$\overrightarrow a = {a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k$$ So modulus of $\overrightarrow a \times \overrightarrow b $ On putting the value $$\left| {\overrightarrow a \times \overrightarrow b } \right| = \sqrt {{{\left( { - 7} \right)}^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 5} \right)}^2}} $$ On simplifying the above we get $$\left| {\overrightarrow a \times \overrightarrow b } \right| = \sqrt {49 + 1 + 25} $$ $$\left| {\overrightarrow a \times \overrightarrow b } \right| = \sqrt {75} $$ Or $$\left| {\overrightarrow a \times \overrightarrow b } \right| = 5\sqrt 3 $$ Hence $$\overrightarrow a \times \overrightarrow b = - 7i - \widehat j - 5\widehat k$$ and $$\left| {\overrightarrow a \times \overrightarrow b } \right| = 5\sqrt 3 $$ Additional information: Cross product or vector product of two vectors is always a vector quantity which has direction as well as the magnitude, while the dot product or scalar product of two vectors is always a scalar quantity which has no direction only magnitude. The modulus of any vector gives its magnitude. **Note:** Magnitude or modulus of any vector can not be negative in any condition because it is always a distance from origin.