Solveeit Logo

Question

Question: Find out the wavelength of the next line in the series having lines of spectrum of H-atom of wavelen...

Find out the wavelength of the next line in the series having lines of spectrum of H-atom of wavelengths 656.46656.46 , 486.27486.27 , 434.17434.17 and 410.29nm410.29{\text{nm}} .
A. 397nm397{\text{nm}}
B. 122nm{\text{122nm}}
C. 1282nm{\text{1282nm}}
D. 302nm302{\text{nm}}

Explanation

Solution

The reciprocal of wavelength, i.e., the wave number of a spectral line of a hydrogen atom can be calculated by using Rydberg's equation.

According to this equation: 1λ = R(1n12 - 1n22)\dfrac{{\text{1}}}{{{\lambda }}}{\text{ = R}}\left( {\dfrac{{\text{1}}}{{{{\text{n}}_{\text{1}}}^{\text{2}}}}{\text{ - }}\dfrac{{\text{1}}}{{{{\text{n}}_{\text{2}}}^{\text{2}}}}} \right)
Here, R is a constant called the Rydberg’s constant, λ{{\lambda }} is the wavelength and n1{{\text{n}}_{\text{1}}} and n2{{\text{n}}_2} are integers.
For a given spectral series, n1{{\text{n}}_{\text{1}}} remains constant and n2{{\text{n}}_2} varies for each line in the same series. For the Balmer series, the value of n1{{\text{n}}_{\text{1}}} is equal to 2.

Complete answer:
The value of n1{{\text{n}}_{\text{1}}} in a spectral series represents the lower energy level for that series and the value of n2{{\text{n}}_2} represents the higher energy level for that series.
According to the question, the wavelengths of the lines of the given series lie within the visible region of the electromagnetic spectrum. And we know that the transitions corresponding to the Balmer series occurs in the visible region which has a wavelength range of 380 to 700 nm. Hence, the given series is the Balmer series.
So, the value of n1{{\text{n}}_{\text{1}}} is 2. Let us find the value of n2{{\text{n}}_2} for the last line of wavelength 410.29nm410.29{\text{nm}} or 410.29×107cm410.29 \times {10^{ - 7}}{\text{cm}} .
Also, the value of R is 109678cm1{\text{109678c}}{{\text{m}}^{ - 1}} .
Using the Rydberg’s equation for Balmer series, we get:

1410.29×107 = 109678(122 - 1n22) 24300=27419.5109678n2 109678n22=3119.5 n22=1096783119.5 n22=35.16 n2=6 \dfrac{{\text{1}}}{{410.29 \times {{10}^{ - 7}}}}{\text{ = 109678}}\left( {\dfrac{{\text{1}}}{{{2^{\text{2}}}}}{\text{ - }}\dfrac{{\text{1}}}{{{{\text{n}}_{\text{2}}}^{\text{2}}}}} \right) \\\ \Rightarrow 24300 = 27419.5 - \dfrac{{{\text{109678}}}}{{{{\text{n}}^{\text{2}}}}} \\\ \Rightarrow \dfrac{{{\text{109678}}}}{{{{\text{n}}_{\text{2}}}^{\text{2}}}} = 3119.5 \\\ \Rightarrow {{\text{n}}_{\text{2}}}^{\text{2}} = \dfrac{{{\text{109678}}}}{{3119.5}} \\\ \Rightarrow {{\text{n}}_{\text{2}}}^{\text{2}} = 35.16 \\\ \Rightarrow {{\text{n}}_{\text{2}}} = 6 \\\

Hence, the next line will be from n2=7{{\text{n}}_2} = 7 to n1=2{{\text{n}}_1} = 2 .
Hence, the wavelength of this line is:
1λ = 109678(122 - 172) 1λ = 27419.52238.33 1λ = 25181.17 λ=125181.17 λ=3.97×105cm λ=397nm  \dfrac{{\text{1}}}{{{\lambda }}}{\text{ = 109678}}\left( {\dfrac{{\text{1}}}{{{2^{\text{2}}}}}{\text{ - }}\dfrac{{\text{1}}}{{{7^{\text{2}}}}}} \right) \\\ \Rightarrow \dfrac{{\text{1}}}{{{\lambda }}}{\text{ = }}27419.5 - 2238.33 \\\ \Rightarrow \dfrac{{\text{1}}}{{{\lambda }}}{\text{ = 25181}}{\text{.17}} \\\ \Rightarrow {{\lambda }} = \dfrac{{\text{1}}}{{{\text{25181}}{\text{.17}}}} \\\ \Rightarrow {{\lambda }} = 3.97 \times {10^{ - 5}}{\text{cm}} \\\ \Rightarrow {{\lambda }} = 397{\text{nm}} \\\

So, the correct answer is A.

Note:

For the Lyman series, the lines occur in the ultraviolet region of the electromagnetic spectrum which has wavelengths 100 to 400 nm. The lines in these series appear when electrons drop from higher energy levels (n2=2,3,4{{\text{n}}_2} = 2,3,4 etc.) to the first energy level (n1=1{{\text{n}}_1} = 1 ).

For the Lyman series, the Rydberg’s equation will be:

1λ = R(1 - 1n22)\dfrac{{\text{1}}}{{{\lambda }}}{\text{ = R}}\left( {{\text{1 - }}\dfrac{{\text{1}}}{{{{\text{n}}_{\text{2}}}^{\text{2}}}}} \right)