Question
Question: Find out the values of angles \(120^\circ \), \( - 135^\circ \), \(150^\circ \), \(180^\circ \), \(2...
Find out the values of angles 120∘, −135∘, 150∘, 180∘, 270∘ for all the six trigonometric ratios.
Solution
Here, in the given question, we need to find the values of angles 120∘, −135∘, 150∘, 180∘, 270∘ for all the six trigonometric ratios. We will use trigonometric formulas to get our required answer.
Formulae used:
sin(90∘+θ)=cosθ
cos(90∘+θ)=−sinθ
tan(90∘+θ)=−cotθ
cosec(90∘+θ)=secθ
sec(90∘+θ)=−cosecθ
cot(90∘+θ)=−tanθ
sin(90∘−θ)=cosθ
sin(90∘−θ)=cosθ
cos(90∘−θ)=sinθ
tan(90∘−θ)=cotθ
cosec(90∘−θ)=secθ
sec(90∘−θ)=cosecθ
cot(90∘−θ)=tanθ
Complete step by step answer:
120∘
Given below is the value of 120∘ for all the trigonometric ratios.
⇒sin120∘=sin(90∘+30∘)=cos30∘=23 (Value of cos30∘=23 )
⇒cos120∘=cos(90∘+30∘)=−sin30∘=−21 (Value of sin30∘=21 )
⇒tan120∘=tan(90∘+30∘)=−cot30∘=−3 (Value of cot30∘=3 )
⇒cosec120∘=cosec(90∘+30∘)=sec30∘=32 (Value of sec30∘=32 )
⇒sec120∘=sec(90∘+30∘)=−cosec30∘=−2 (Value of cosec30∘=2 )
⇒cot120∘=cot(90∘+30∘)=−tan30∘=−31 (Value of tan30∘=31 )
−135∘
Given below is the value of −135∘ for all the trigonometric ratios.
⇒sin(−135∘)=−sin135∘=−sin(1×90∘+45∘)=−cos45∘=−21 (Value of cos45∘=21 )
⇒cos(−135∘)=cos135∘=cos(1×90∘+45∘)=−sin45∘=−21 (Value of sin45∘=21 )
⇒tan(−135∘)=−tan135∘=−tan(1×90∘+45∘)=−(−cot45)∘=1 (Value of cot45∘=1 )
⇒cosec(−135∘)=−cosec135∘=−cosec(1×90∘+45∘)=−sec45∘=−2 (Value of sec45∘=2 )
⇒sec(−135∘)=sec135∘=sec(1×90∘+45∘)=−cosec45∘=−2 (Value of cosec45∘=−2 )
⇒cot(−135∘)=−cot135∘=−cot(1×90∘+45∘)=−(−tan45∘)=1 (Value of tan45∘=1 )
150∘
Given below is the value of 150∘ for all the trigonometric ratios.
⇒sin150∘=sin(2×90∘−30∘)=sin30∘=21 (Value of sin30∘=21 )
⇒cos150∘=cos(2×90∘−30∘)=cos30∘=−23 (Value of cos30∘=23 )
⇒tan150∘=tan(2×90∘−30∘)=−tan30∘=−31 (Value of tan30∘=31 )
⇒cosec150∘=cosec(2×90∘−30∘)=cosec30∘=2 (Value of cosec30∘=2 )
⇒sec150∘=sec(2×90∘−30∘)=sec30∘=32 (Value of sec30∘=32 )
⇒cot150∘=cot(2×90∘−30∘)=−cot30∘=−3 (Value of cot30∘=3 )
180∘
Given below is the value of 180∘ for all the trigonometric ratios.
⇒sin180∘=sin(2×90∘−0∘)=sin0∘=0 (Value of sin0∘=0 )
⇒cos180∘=cos(2×90∘−0∘)=−cos0∘=−1 (Value of cos0∘=1 )
⇒tan180∘=tan(2×90∘+0∘)=tan0∘=0 (Value of tan0∘=0 )
⇒cosec180∘=cosec(2×90∘−0∘)=cosec0∘=Undefined (Value of cosec0∘=Undefined )
⇒sec180∘=sec(2×90∘−0∘)=−sec0∘=−1 (Value of sec0∘=1 )
⇒cot180∘=cot(2×90∘+0∘)=cot0∘=Undefined (Value of cot0∘=Undefined )
270∘
Given below is the value of 270∘ for all the trigonometric ratios.
⇒sin270∘=sin(3×90∘+0∘)=−cos0∘=−1 (Value of cos0∘=1 )
⇒cos270∘=cos(3×90∘+0∘)=sin0∘=0 (Value of sin0∘=0 )
⇒tan270∘=tan(3×90∘+0∘)=−cot0∘=Undefined (Value of cot0∘=Undefined )
⇒cosec270∘=cosec(3×90∘+0∘)=−sec0∘=−1 (Value of sec0∘=1 )
⇒sec270∘=sec(3×90∘+0∘)=cosec0∘=Undefined (Value of cosec0∘=Undefined )
⇒cot270∘=cot(3×90∘+0∘)=−tan0∘=0 (Value of tan0∘=0 )
Note:
To solve this type of questions, one must remember all the formulae. We can also find the trigonometric values using the sin(A+B)=sinAcosB+cosAsinB formula, by this formula we can find the trigonometric value of sine. After this, we can use the formula cos2x+sin2x=1 to find the value of cos. We know that tanx=cosxsinx hence we can find the value of tan. We also know that cot, sec and cosec are reciprocal of tan, cos and sine respectively. Hence we can easily find the value of cot, sec and cosec. Hence we will get all the required values.