Solveeit Logo

Question

Question: Find out the values of angles \(120^\circ \), \( - 135^\circ \), \(150^\circ \), \(180^\circ \), \(2...

Find out the values of angles 120120^\circ , 135- 135^\circ, 150150^\circ , 180180^\circ , 270270^\circ for all the six trigonometric ratios.

Explanation

Solution

Here, in the given question, we need to find the values of angles 120120^\circ , 135- 135^\circ, 150150^\circ , 180180^\circ , 270270^\circ for all the six trigonometric ratios. We will use trigonometric formulas to get our required answer.
Formulae used:
sin(90+θ)=cosθ\sin \left( {90^\circ + \theta } \right) = \cos \theta
cos(90+θ)=sinθ\cos \left( {90^\circ + \theta } \right) = - \sin \theta
tan(90+θ)=cotθ\tan \left( {90^\circ + \theta } \right) = - \cot \theta
cosec(90+θ)=secθ\cos ec\left( {90^\circ + \theta } \right) = \sec \theta
sec(90+θ)=cosecθ\sec \left( {90^\circ + \theta } \right) = - \cos ec\theta
cot(90+θ)=tanθ\cot \left( {90^\circ + \theta } \right) = - \tan \theta
sin(90θ)=cosθ\sin \left( {90^\circ - \theta } \right) = \cos \theta
sin(90θ)=cosθ\sin \left( {90^\circ - \theta } \right) = \cos \theta
cos(90θ)=sinθ\cos \left( {90^\circ - \theta } \right) = \sin \theta
tan(90θ)=cotθ\tan \left( {90^\circ - \theta } \right) = \cot \theta
cosec(90θ)=secθ\cos ec\left( {90^\circ - \theta } \right) = \sec \theta
sec(90θ)=cosecθ\sec \left( {90^\circ - \theta } \right) = \cos ec\theta
cot(90θ)=tanθ\cot \left( {90^\circ - \theta } \right) = \tan \theta

Complete step by step answer:
120120^\circ
Given below is the value of 120120^\circ for all the trigonometric ratios.
sin120=sin(90+30)=cos30=32\Rightarrow \sin 120^\circ = \sin \left( {90^\circ + 30^\circ } \right) = \cos 30^\circ = \dfrac{{\sqrt 3 }}{2} (Value of cos30=32\cos 30^\circ = \dfrac{{\sqrt 3 }}{2} )
cos120=cos(90+30)=sin30=12\Rightarrow \cos 120^\circ = \cos \left( {90^\circ + 30^\circ } \right) = - \sin 30^\circ = - \dfrac{1}{2} (Value of sin30=12\sin 30^\circ = \dfrac{1}{2} )
tan120=tan(90+30)=cot30=3\Rightarrow \tan 120^\circ = \tan \left( {90^\circ + 30^\circ } \right) = - \cot 30^\circ = - \sqrt 3 (Value of cot30=3\cot 30^\circ = \sqrt 3 )
cosec120=cosec(90+30)=sec30=23\Rightarrow \cos ec120^\circ = \cos ec\left( {90^\circ + 30^\circ } \right) = \sec 30^\circ = \dfrac{2}{{\sqrt 3 }} (Value of sec30=23\sec 30^\circ = \dfrac{2}{{\sqrt 3 }} )
sec120=sec(90+30)=cosec30=2\Rightarrow \sec 120^\circ = \sec \left( {90^\circ + 30^\circ } \right) = - \cos ec30^\circ = - 2 (Value of cosec30=2\cos ec30^\circ = 2 )
cot120=cot(90+30)=tan30=13\Rightarrow \cot 120^\circ = \cot \left( {90^\circ + 30^\circ } \right) = - \tan 30^\circ = - \dfrac{1}{{\sqrt 3 }} (Value of tan30=13\tan 30^\circ = \dfrac{1}{{\sqrt 3 }} )
135- 135^\circ
Given below is the value of 135- 135^\circ for all the trigonometric ratios.
sin(135)=sin135=sin(1×90+45)=cos45=12\Rightarrow \sin \left( { - 135^\circ } \right) = - \sin 135^\circ = - \sin \left( {1 \times 90^\circ + 45^\circ } \right) = - \cos 45^\circ = - \dfrac{1}{{\sqrt 2 }} (Value of cos45=12\cos 45^\circ = \dfrac{1}{{\sqrt 2 }} )
cos(135)=cos135=cos(1×90+45)=sin45=12\Rightarrow \cos \left( { - 135^\circ } \right) = \cos 135^\circ = \cos \left( {1 \times 90^\circ + 45^\circ } \right) = - \sin 45^\circ = - \dfrac{1}{{\sqrt 2 }} (Value of sin45=12\sin 45^\circ = \dfrac{1}{{\sqrt 2 }} )
tan(135)=tan135=tan(1×90+45)=(cot45)=1\Rightarrow \tan \left( { - 135^\circ } \right) = - \tan 135^\circ = - \tan \left( {1 \times 90^\circ + 45^\circ } \right) = - \left( { - \cot 45} \right)^\circ = 1 (Value of cot45=1\cot 45^\circ = 1 )
cosec(135)=cosec135=cosec(1×90+45)=sec45=2\Rightarrow \cos ec\left( { - 135^\circ } \right) = - \cos ec135^\circ = - \cos ec\left( {1 \times 90^\circ + 45^\circ } \right) = - sec45^\circ = - \sqrt 2 (Value of sec45=2\sec 45^\circ = \sqrt 2 )
sec(135)=sec135=sec(1×90+45)=cosec45=2\Rightarrow \sec \left( { - 135^\circ } \right) = \sec 135^\circ = \sec \left( {1 \times 90^\circ + 45^\circ } \right) = - \cos ec45^\circ = - \sqrt 2 (Value of cosec45=2\cos ec45^\circ = - \sqrt 2 )
cot(135)=cot135=cot(1×90+45)=(tan45)=1\Rightarrow \cot \left( { - 135^\circ } \right) = - \cot 135^\circ = - \cot \left( {1 \times 90^\circ + 45^\circ } \right) = - \left( { - \tan 45^\circ } \right) = 1 (Value of tan45=1\tan 45^\circ = 1 )
150150^\circ
Given below is the value of 150150^\circ for all the trigonometric ratios.
sin150=sin(2×9030)=sin30=12\Rightarrow \sin 150^\circ = \sin \left( {2 \times 90^\circ - 30^\circ } \right) = \sin 30^\circ = \dfrac{1}{2} (Value of sin30=12\sin 30^\circ = \dfrac{1}{2} )
cos150=cos(2×9030)=cos30=32\Rightarrow \cos 150^\circ = \cos \left( {2 \times 90^\circ - 30^\circ } \right) = \cos 30^\circ = - \dfrac{{\sqrt 3 }}{2} (Value of cos30=32\cos 30^\circ = \dfrac{{\sqrt 3 }}{2} )
tan150=tan(2×9030)=tan30=13\Rightarrow \tan 150^\circ = \tan \left( {2 \times 90^\circ - 30^\circ } \right) = - \tan 30^\circ = - \dfrac{1}{{\sqrt 3 }} (Value of tan30=13\tan 30^\circ = \dfrac{1}{{\sqrt 3 }} )
cosec150=cosec(2×9030)=cosec30=2\Rightarrow \cos ec150^\circ = \cos ec\left( {2 \times 90^\circ - 30^\circ } \right) = \cos ec30^\circ = 2 (Value of cosec30=2\cos ec30^\circ = 2 )
sec150=sec(2×9030)=sec30=23\Rightarrow \sec 150^\circ = \sec \left( {2 \times 90^\circ - 30^\circ } \right) = \sec 30^\circ = \dfrac{2}{{\sqrt 3 }} (Value of sec30=23\sec 30^\circ = \dfrac{2}{{\sqrt 3 }} )
cot150=cot(2×9030)=cot30=3\Rightarrow \cot 150^\circ = \cot \left( {2 \times 90^\circ - 30^\circ } \right) = - \cot 30^\circ = - \sqrt 3 (Value of cot30=3\cot 30^\circ = \sqrt 3 )
180180^\circ
Given below is the value of 180180^\circ for all the trigonometric ratios.
sin180=sin(2×900)=sin0=0\Rightarrow \sin 180^\circ = \sin \left( {2 \times 90^\circ - 0^\circ } \right) = \sin 0^\circ = 0 (Value of sin0=0\sin 0^\circ = 0 )
cos180=cos(2×900)=cos0=1\Rightarrow \cos 180^\circ = \cos \left( {2 \times 90^\circ - 0^\circ } \right) = - \cos 0^\circ = - 1 (Value of cos0=1\cos 0^\circ = 1 )
tan180=tan(2×90+0)=tan0=0\Rightarrow \tan 180^\circ = \tan \left( {2 \times 90^\circ + 0^\circ } \right) = \tan 0^\circ = 0 (Value of tan0=0\tan 0^\circ = 0 )
cosec180=cosec(2×900)=cosec0=Undefined\Rightarrow \cos ec180^\circ = \cos ec\left( {2 \times 90^\circ - 0^\circ } \right) = \cos ec0^\circ = Undefined (Value of cosec0=Undefined\cos ec0^\circ = Undefined )
sec180=sec(2×900)=sec0=1\Rightarrow \sec 180^\circ = \sec \left( {2 \times 90^\circ - 0^\circ } \right) = - \sec 0^\circ = - 1 (Value of sec0=1\sec 0^\circ = 1 )
cot180=cot(2×90+0)=cot0=Undefined\Rightarrow \cot 180^\circ = \cot \left( {2 \times 90^\circ + 0^\circ } \right) = \cot 0^\circ = Undefined (Value of cot0=Undefined\cot 0^\circ = Undefined )
270270^\circ
Given below is the value of 270270^\circ for all the trigonometric ratios.
sin270=sin(3×90+0)=cos0=1\Rightarrow \sin 270^\circ = \sin \left( {3 \times 90^\circ + 0^\circ } \right) = - \cos 0^\circ = - 1 (Value of cos0=1\cos 0^\circ = 1 )
cos270=cos(3×90+0)=sin0=0\Rightarrow \cos 270^\circ = \cos \left( {3 \times 90^\circ + 0^\circ } \right) = \sin 0^\circ = 0 (Value of sin0=0\sin 0^\circ = 0 )
tan270=tan(3×90+0)=cot0=Undefined\Rightarrow \tan 270^\circ = \tan \left( {3 \times 90^\circ + 0^\circ } \right) = - \cot 0^\circ = Undefined (Value of cot0=Undefined\cot 0^\circ = Undefined )
cosec270=cosec(3×90+0)=sec0=1\Rightarrow \cos ec270^\circ = \cos ec\left( {3 \times 90^\circ + 0^\circ } \right) = - \sec 0^\circ = - 1 (Value of sec0=1\sec 0^\circ = 1 )
sec270=sec(3×90+0)=cosec0=Undefined\Rightarrow \sec 270^\circ = \sec \left( {3 \times 90^\circ + 0^\circ } \right) = \cos ec0^\circ = Undefined (Value of cosec0=Undefined\cos ec0^\circ = Undefined )
cot270=cot(3×90+0)=tan0=0\Rightarrow \cot 270^\circ = \cot \left( {3 \times 90^\circ + 0^\circ } \right) = - \tan 0^\circ = 0 (Value of tan0=0\tan 0^\circ = 0 )

Note:
To solve this type of questions, one must remember all the formulae. We can also find the trigonometric values using the sin(A+B)=sinAcosB+cosAsinB\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B formula, by this formula we can find the trigonometric value of sine\sin e. After this, we can use the formula cos2x+sin2x=1{\cos ^2}x + {\sin ^2}x = 1 to find the value of cos\cos . We know that tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}} hence we can find the value of tan\tan . We also know that cot\cot , sec\sec and cosec\cos ec are reciprocal of tan\tan , cos\cos and sine\sin e respectively. Hence we can easily find the value of cot\cot , sec\sec and cosec\cos ec. Hence we will get all the required values.