Solveeit Logo

Question

Question: Find out the unit vector perpendicular to both vectors \(\widehat{i}–\widehat{j} + \widehat{k}\) an...

Find out the unit vector perpendicular to both vectors

i^j^+k^\widehat{i}–\widehat{j} + \widehat{k} and i^+j^+k^\widehat{i} + \widehat{j} + \widehat{k}.

A

(a)i^+j^\widehat{i} + \widehat{j}

A

(b)i^+k^2\frac{- \widehat{i} + \widehat{k}}{\sqrt{2}}

A

(c)j^+k^\widehat{j} + \widehat{k}

A

(d)i^+j^2\frac{\widehat{i} + \widehat{j}}{\sqrt{2}}

Explanation

Solution

(b)

a×b\overset{\rightarrow}{a} \times \overset{\rightarrow}{b} = i^j^k^111111\left| \begin{matrix} \widehat{i} & \widehat{j} & \widehat{k} \\ 1 & - 1 & 1 \\ 1 & 1 & 1 \end{matrix} \right| =2i^+2k^- 2\widehat{i} + 2\widehat{k}

here a×b\overset{\rightarrow}{a} \times \overset{\rightarrow}{b} is perpendicular to both aandb\overset{\rightarrow}{a}and\overset{\rightarrow}{b} unit vector

along a×b\overset{\rightarrow}{a} \times \overset{\rightarrow}{b}= 2i^+2k^(2)2+22\frac{- 2\widehat{i} + 2\widehat{k}}{\sqrt{(–2)^{2} + 2^{2}}}

= i^+k^2\frac{- \widehat{i} + \widehat{k}}{\sqrt{2}}