Solveeit Logo

Question

Question: Find out the number of factors of \(abc\) if \(\dfrac{{a + 2}}{2} = \dfrac{{b + 4}}{4} = \dfrac{{c +...

Find out the number of factors of abcabc if a+22=b+44=c+66=12\dfrac{{a + 2}}{2} = \dfrac{{b + 4}}{4} = \dfrac{{c + 6}}{6} = 12.

Explanation

Solution

Hint: Find out the value of a,ba, b and cc separately. Then calculate abcabc and factorize it in its prime factor form. If a number can be written as p1a×p2b×p3c....{p_1}^a \times {p_2}^b \times {p_3}^c...., where p1,p2{p_1},{p_2} and p3{p_3} are prime numbers, then the number of factors of this number is (a+1)×(b+1)×(c+1)×...\left( {a + 1} \right) \times \left( {b + 1} \right) \times \left( {c + 1} \right) \times ... Use this method to find the number of factors.

Complete step-by-step answer:
According to the question, we have:
a+22=b+44=c+66=12.....(i)\Rightarrow \dfrac{{a + 2}}{2} = \dfrac{{b + 4}}{4} = \dfrac{{c + 6}}{6} = 12 .....(i)
We will calculate the values of a,ba,b and cc separately.
So, from equation (i)(i), we have:
a+22=12 a+2=24 a=22.....(ii)  \Rightarrow \dfrac{{a + 2}}{2} = 12 \\\ \Rightarrow a + 2 = 24 \\\ \Rightarrow a = 22 .....(ii) \\\
Again using equation (i)(i), we have:
b+44=12 b+4=48 b=44.....(iii)  \Rightarrow \dfrac{{b + 4}}{4} = 12 \\\ \Rightarrow b + 4 = 48 \\\ \Rightarrow b = 44 .....(iii) \\\
Using equation (i)(i) for cc, we have:
c+66=12 c+6=72 c=66.....(iv)  \Rightarrow \dfrac{{c + 6}}{6} = 12 \\\ \Rightarrow c + 6 = 72 \\\ \Rightarrow c = 66 .....(iv) \\\

From equations (ii)(ii), (iii)(iii) and (iv)(iv), we have:
abc=22×44×66 abc=2×11×4×11×6×11 abc=2×4×6×113 abc=2×22×2×3×113  \Rightarrow abc = 22 \times 44 \times 66 \\\ \Rightarrow abc = 2 \times 11 \times 4 \times 11 \times 6 \times 11 \\\ \Rightarrow abc = 2 \times 4 \times 6 \times {11^3} \\\ \Rightarrow abc = 2 \times {2^2} \times 2 \times 3 \times {11^3} \\\
abc=24×31×113\Rightarrow abc = {2^4} \times {3^1} \times {11^3}

And we know that if a number can be written as p1a×p2b×p3c....{p_1}^a \times {p_2}^b \times {p_3}^c...., where p1,p2{p_1},{p_2} and p3{p_3} are prime numbers, then the number of factors of this number is (a+1)×(b+1)×(c+1)×...\left( {a + 1} \right) \times \left( {b + 1} \right) \times \left( {c + 1} \right) \times ...
Therefore the number of factors of abcabc is (4+1)×(1+1)×(3+1)=5×2×4=40\left( {4 + 1} \right) \times \left( {1 + 1} \right) \times \left( {3 + 1} \right) = 5 \times 2 \times 4 = 40
Thus, there are 40 factors of abcabc.

Note: We can also calculate the sum of factors as:
If the number is p1a×p2b×p3c....{p_1}^a \times {p_2}^b \times {p_3}^c.... (p1,p2{p_1},{p_2},p3{p_3} are all prime numbers), then the sum of its factors is:
Sum =p1a+11p11×p2b+11p21×p3c+11p31×....\Rightarrow {\text{Sum }} = \dfrac{{{p_1}^{a + 1} - 1}}{{{p_1} - 1}} \times \dfrac{{{p_2}^{b + 1} - 1}}{{{p_2} - 1}} \times \dfrac{{{p_3}^{c + 1} - 1}}{{{p_3} - 1}} \times ....
Using this for abc=24×31×113abc = {2^4} \times {3^1} \times {11^3}, sum of factors will be:
Sum =25121×32131×1141111×....\Rightarrow {\text{Sum }} = \dfrac{{{2^5} - 1}}{{2 - 1}} \times \dfrac{{{3^2} - 1}}{{3 - 1}} \times \dfrac{{{{11}^4} - 1}}{{11 - 1}} \times ....