Solveeit Logo

Question

Question: Find number of solutions of the equation \( \sin x={{x}^{2}}+x+1 \) ....

Find number of solutions of the equation sinx=x2+x+1\sin x={{x}^{2}}+x+1 .

Explanation

Solution

Hint : To solve the question given above, we will first find out the range of the function f(x)=x2+x+1f\left( x \right)={{x}^{2}}+x+1 . To find the range, we will find out its maximum value and minimum value as infinite and for an equation ax2+bx+c=0 as (b24ac4a)a{{x}^{2}}+bx+c=0\ as\ -\left( \dfrac{{{b}^{2}}-4ac}{4a} \right) . Then, we will find out at what x, f(x)f\left( x \right) us minimum using x=b2ax=\dfrac{-b}{2a} . Then, at that value of x, we will check whether the sinx\sin x is more than the minimum value of f(x)f\left( x \right) or not. On this basis, we will determine how many solutions are there for the above equations.

Complete step-by-step answer :
To start with, we will first find out the range of the function f(x)=x2+x+1f\left( x \right)={{x}^{2}}+x+1 . Now, to find the range of f(x)f\left( x \right) we will find its maximum value and minimum value. We can clearly see that the maximum value of f(x)f\left( x \right) will be infinite. Now, we know that the minimum value of the equation ax2+bx+c=0 as (b24ac4a)a{{x}^{2}}+bx+c=0\ as\ -\left( \dfrac{{{b}^{2}}-4ac}{4a} \right) . In our case, a = 1, b = 1 and c = 1. Thus, minimum value of f(x)=((1)24(1)(1)4)f\left( x \right)=-\left( \dfrac{{{\left( 1 \right)}^{2}}-4\left( 1 \right)\left( 1 \right)}{4} \right) . Thus, the minimum value of f(x)=34f\left( x \right)=\dfrac{-3}{4} . Now, the minimum value of f(x)f\left( x \right) occurs at x=b2ax=\dfrac{-b}{2a} . Thus, x=12x=\dfrac{-1}{2} . Thus, the rough graph of y=x2+x+1y={{x}^{2}}+x+1 is:

Now, we have to determine the value of sinx\sin x at x=12x=\dfrac{-1}{2} . We know that in [π2,0)\left[ \dfrac{-\pi }{2},0 \right) , sinx\sin x is negative i.e. it is not possible for sinx\sin x to interest f(x)f\left( x \right) in that interval. Also, the maximum value of sinx\sin x is 1. Thus, the combined graph of y=sinx and y=x2+x+1y=\sin x\ and\ y={{x}^{2}}+x+1 is shown below:

Thus, we can see that both the graphs do not intersect at all. Thus, there will be no solution of sinx=x2+x+1\sin x={{x}^{2}}+x+1 .
Hence, there are 0 solutions of the equation sinx=x2+x+1\sin x={{x}^{2}}+x+1 .

Note : he minima of f(x)=x2+x+1f\left( x \right)={{x}^{2}}+x+1 can also be find out by an alternate method as shown below:
We know that if f(x)f\left( x \right) is a quadratic function of the form ax2+bx+ca{{x}^{2}}+bx+c , where a>0a>0 then its minimum value will occur at x=αx=\alpha where α\alpha is solution of f(x)=0f'\left( x \right)=0 . Thus, we have:
f(x)=x2+x+1f\left( x \right)={{x}^{2}}+x+1
On differentiating both sides, we have:
f(x)=2x+1\Rightarrow f'\left( x \right)=2x+1
Now, f(x)=0f'\left( x \right)=0 . So, we have
2x+1=0 x=12 \begin{aligned} & \Rightarrow 2x+1=0 \\\ & \Rightarrow x=\dfrac{-1}{2} \\\ \end{aligned}
At x=12x=\dfrac{-1}{2} , there will be minima. The value of this minima will be =f(12)=f\left( \dfrac{-1}{2} \right) . Thus,
f(12)=(12)2+(12)+1 f(12)=34+32=34 \begin{aligned} & f\left( \dfrac{-1}{2} \right)={{\left( \dfrac{-1}{2} \right)}^{2}}+\left( \dfrac{1}{2} \right)+1 \\\ & f\left( \dfrac{-1}{2} \right)=\dfrac{-3}{4}+\dfrac{3}{2}=\dfrac{3}{4} \\\ \end{aligned}