Solveeit Logo

Question

Question: find number of integerd solutions of \(x \cdot y \cdot z \cdot w \cdot = 2^{10} \cdot 3^5 \cdot 5^8...

find number of integerd solutions of

xyzw=210355879x \cdot y \cdot z \cdot w \cdot = 2^{10} \cdot 3^5 \cdot 5^8 \cdot 7^9

Answer

4651046400

Explanation

Solution

We are to count the number of 4‐tuples of integers (x,y,z,w)(x,y,z,w) (which may be positive or negative) satisfying

xyzw=210355879.x\cdot y\cdot z\cdot w= 2^{10}\cdot 3^5\cdot 5^8\cdot 7^9.

Step 1. Count the ways to distribute the prime factors (ignoring signs):

For any prime pp with exponent rr in the number, we assign its exponent among the four variables by solving

a1+a2+a3+a4=r,ai0.a_1+a_2+a_3+a_4 = r, \quad a_i\ge 0.

The number of solutions is (r+4141)=(r+33)\binom{r+4-1}{4-1}=\binom{r+3}{3}.

  • For 2102^{10}: (10+33)=(133)=286.\binom{10+3}{3}=\binom{13}{3}=286.
  • For 353^{5}: (5+33)=(83)=56.\binom{5+3}{3}=\binom{8}{3}=56.
  • For 585^{8}: (8+33)=(113)=165.\binom{8+3}{3}=\binom{11}{3}=165.
  • For 797^{9}: (9+33)=(123)=220.\binom{9+3}{3}=\binom{12}{3}=220.

Thus, the total number of ways (for the absolute values) is:

286×56×165×220.286\times 56\times 165\times 220.

Step 2. Include the sign distributions:

Since the product xyzwx\cdot y\cdot z\cdot w is positive, an even number of the variables must be negative.

For 4 variables:

  • 0 negatives: (40)=1\binom{4}{0} = 1 way,
  • 2 negatives: (42)=6\binom{4}{2} = 6 ways,
  • 4 negatives: (44)=1\binom{4}{4} = 1 way.

So, there are 1+6+1=81+6+1=8 ways to assign signs.

Step 3. Multiply everything together:

The total number of solutions is:

8(286×56×165×220).8 \cdot \Big(286\times 56\times 165\times 220\Big).

Let’s compute step‐by‐step:

  1. 286×56286\times 56:

  286×50=14300,286\times 50=14300,

  286×6=1716,286\times 6=1716,

  Sum = 14300+1716=16016.14300+1716=16016.

  1. 165×220165\times 220:

  165×200=33000,165\times 200=33000,

  165×20=3300,165\times 20=3300,

  Sum = 33000+3300=36300.33000+3300=36300.

  1. Now, 16016×3630016016\times 36300:

  First, note that 36300=363×10036300 = 363 \times 100.

  Calculate 16016×36316016\times 363:

  - 16016×300=4804800,16016\times 300 = 4\,804\,800,

  - 16016×60=960960,16016\times 60 = 960\,960,

  - 16016×3=48048,16016\times 3 = 48\,048,

  Sum = 4804800+960960+48048=5813808.4\,804\,800+960\,960+48\,048 = 5\,813\,808.

  Thus, 16016×36300=5813808×100=581380800.16016\times 36300 = 5\,813\,808\times 100 = 581\,380\,800.

  1. Finally, multiply by 8:

  581380800×8=4651046400.581\,380\,800\times 8 = 4\,651\,046\,400.

Final Answer:

4651046400\boxed{4651046400}