Solveeit Logo

Question

Question: Find n if \[\displaystyle \lim_{x \to 2}\dfrac{{{x}^{n}}-{{2}^{n}}}{x-2}=80\] and n being a positive...

Find n if limx2xn2nx2=80\displaystyle \lim_{x \to 2}\dfrac{{{x}^{n}}-{{2}^{n}}}{x-2}=80 and n being a positive integer.

Explanation

Solution

In this question, we need to find the value of n if limx2xn2nx2=80.\displaystyle \lim_{x \to 2}\dfrac{{{x}^{n}}-{{2}^{n}}}{x-2}=80. Put x = 2, and will give us 00\dfrac{0}{0} form. So, we will first use L’Hopital’s rule and then evaluate the limit. After evaluating the limit, it will be in the form of x so we will equate it to 80 and get the value of n. According to L’Hopital’s rule, if limxaf(x)g(x)\displaystyle \lim_{x \to a}\dfrac{f\left( x \right)}{g\left( x \right)} is in (00)\left( \dfrac{0}{0} \right) form, then we can take limxaf(x)g(x)=limxaf(x)g(x).\displaystyle \lim_{x \to a}\dfrac{f\left( x \right)}{g\left( x \right)}=\displaystyle \lim_{x \to a}\dfrac{{{f}^{'}}\left( x \right)}{{{g}^{'}}\left( x \right)}.

Complete step-by-step answer:
Here, we are given that the function of limit as limx2xn2nx2.\displaystyle \lim_{x \to 2}\dfrac{{{x}^{n}}-{{2}^{n}}}{x-2}. Let us try to evaluate the limit. Putting x = 2, it will give us (00)\left( \dfrac{0}{0} \right) form, so it is in indeterminate form. Hence, we need to apply L’Hopital’s rule according to which limxaf(x)g(x)=limxaf(x)g(x).\displaystyle \lim_{x \to a}\dfrac{f\left( x \right)}{g\left( x \right)}=\displaystyle \lim_{x \to a}\dfrac{{{f}^{'}}\left( x \right)}{{{g}^{'}}\left( x \right)}. If limxaf(x)g(x)\displaystyle \lim_{x \to a}\dfrac{f\left( x \right)}{g\left( x \right)} is in indeterminate form (00or).\left( \dfrac{0}{0}\text{or}\dfrac{\infty }{\infty } \right). Hence, we need to take the derivative of xn2n{{x}^{n}}-{{2}^{n}} in numerator and the derivative of x – 2 in the denominator. We know that ddx(xn)=nxn1\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}} and ddx(a)=0\dfrac{d}{dx}\left( a \right)=0 where ‘a’ is constant. So, the derivative of xn2n=nxn10=nxn1{{x}^{n}}-{{2}^{n}}=n{{x}^{n-1}}-0=n{{x}^{n-1}} (because 2n{{2}^{n}} is constant). We know that ddx(x)=1\dfrac{d}{dx}\left( x \right)=1 and ddx(2)=0.\dfrac{d}{dx}\left( 2 \right)=0. So, the derivative of x – 2 = 1 – 0 = 1.
Now, limx2xn2nx2=limx2ddx(xn2n)ddx(x2)\displaystyle \lim_{x \to 2}\dfrac{{{x}^{n}}-{{2}^{n}}}{x-2}=\displaystyle \lim_{x \to 2}\dfrac{\dfrac{d}{dx}\left( {{x}^{n}}-{{2}^{n}} \right)}{\dfrac{d}{dx}\left( x-2 \right)}
So calculated, the derivative of xn2n{{x}^{n}}-{{2}^{n}} is nxn1n{{x}^{n-1}} and the derivative of x – 2 is 1. Hence, we get,
limx2xn2nx2=limx2nxn11\displaystyle \lim_{x \to 2}\dfrac{{{x}^{n}}-{{2}^{n}}}{x-2}=\displaystyle \lim_{x \to 2}\dfrac{n{{x}^{n-1}}}{1}
limx2xn2nx2=limx2nxn1\displaystyle \lim_{x \to 2}\dfrac{{{x}^{n}}-{{2}^{n}}}{x-2}=\displaystyle \lim_{x \to 2}n{{x}^{n-1}}
Now, evaluating the limit on the right side, by putting x = 2, we get,
limx2xn2nx2=n2n1\displaystyle \lim_{x \to 2}\dfrac{{{x}^{n}}-{{2}^{n}}}{x-2}=n{{2}^{n-1}}
But we are given limx2xn2nx2\displaystyle \lim_{x \to 2}\dfrac{{{x}^{n}}-{{2}^{n}}}{x-2}to be equal to 80. So, we can say that n2n1{{n}^{2n-1}} is equal to 80. So,
n2n1=80{{n}^{2n-1}}=80
As we know that 80 can be written as 5×16,5\times 16, so,
n2n1=5×16n{{2}^{n-1}}=5\times 16
Also, we know that, 24=16.{{2}^{4}}=16.
So, we get,
n2n1=5×24n{{2}^{n-1}}=5\times {{2}^{4}}
Now we can write 4 as 5 – 1, so we get,
n2n1=5×251\Rightarrow n{{2}^{n-1}}=5\times {{2}^{5-1}}
By comparing, we get n = 5.
Here, n = 5 is the required answer.

Note: Students should note that indeterminate form has types 00,,0×,.\dfrac{0}{0},\dfrac{\infty }{\infty },0\times \infty ,\infty -\infty . If our limit is any of these forms then we can apply L’Hopital’s. For 00,,\dfrac{0}{0},\dfrac{\infty }{\infty }, L’Hopital’s rule is applied directly but for 0×,0\times \infty ,\infty -\infty we have to first convert them into 00or\dfrac{0}{0}\text{or}\dfrac{\infty }{\infty } form. While comparing n2n1=80,n{{2}^{n-1}}=80, we can just use the trial and error method.