Solveeit Logo

Question

Question: Find multiplicative inverse of \[3 + 2i\]....

Find multiplicative inverse of 3+2i3 + 2i.

Explanation

Solution

Here, we will use the concept of the multiplicative inverse of a complex number. Multiplicative inverse of a complex number is equal to its inverse. So, we will write its inverse and then we will rationalize it to get the required value of the multiplicative inverse.

Complete step by step solution:
We know that the multiplicative inverse of a complex number zz is z1{z^{ - 1}}.
Or we can write it as, multiplicative inverse of z$$$$ = \dfrac{1}{z}
Therefore, multiplicative inverse of 3+2i3 + 2i =13+2i = \dfrac{1}{{3 + 2i}}
Now, we have to simplify the above equation by simply rationalizing it. Therefore, we get
\Rightarrow Multiplicative inverse of 3+2i3 + 2i =13+2i×32i32i = \dfrac{1}{{3 + 2i}} \times \dfrac{{3 - 2i}}{{3 - 2i}}
\Rightarrow Multiplicative inverse of 3+2i3 + 2i =32i(3+2i)(32i) = \dfrac{{3 - 2i}}{{\left( {3 + 2i} \right)\left( {3 - 2i} \right)}}

Now we will use the algebraic identity (a+b)×(ab)=a2b2\left( {a + b} \right) \times \left( {a - b} \right) = {a^2} - {b^2}. Therefore, we get
\Rightarrow Multiplicative inverse of 3+2i3 + 2i =32i(3)2(2i)2 = \dfrac{{3 - 2i}}{{{{\left( 3 \right)}^2} - {{\left( {2i} \right)}^2}}}
Applying the exponent on the terms, we get
\Rightarrow Multiplicative inverse of 3+2i3 + 2i =32i94i2 = \dfrac{{3 - 2i}}{{9 - 4{i^2}}}
Now we know that the value of i2=1{i^2} = - 1. So, by putting the value of the i2{i^2} in the above equation we will get
\Rightarrow Multiplicative inverse of 3+2i3 + 2i =32i94(1) = \dfrac{{3 - 2i}}{{9 - 4\left( { - 1} \right)}}
Adding the terms, we get
\Rightarrow Multiplicative inverse of 3 + 2i$$$$ = \dfrac{{3 - 2i}}{{9 + 4}} = \dfrac{{3 - 2i}}{{13}}
We can write it as, multiplicative inverse of 3+2i3 + 2i =3132i13 = \dfrac{3}{{13}} - \dfrac{{2i}}{{13}}

Hence, the multiplicative inverse of 3+2i3 + 2i is 3132i13\dfrac{3}{{13}} - \dfrac{{2i}}{{13}}.

Note:
Alternate way of finding the multiplicative inverse of a complex number zz is by using the direct formula of the multiplicative inverse of a complex number.
Multiplicative inverse of z$$$$ = {z^{ - 1}} = \dfrac{{\bar z}}{{{{\left| z \right|}^2}}} where, zˉ\bar z is the complex conjugate of a complex number and z2{\left| z \right|^2} is the magnitude of the complex number.
Let us take z=3+2iz = 3 + 2i.
Therefore, zˉ=32i\bar z = 3 - 2i
Magnitude of the complex number, z2=32+22{\left| z \right|^2} = {3^2} + {2^2}
Apply the exponent on the terms, we get
z2=9+4\Rightarrow {\left| z \right|^2} = 9 + 4
Adding the terms, we get
z2=13\Rightarrow {\left| z \right|^2} = 13
Now, by putting the values in the formula of multiplicative inverse, we get
Multiplicative inverse of 3+2i3 + 2i =32i13=3132i13 = \dfrac{{3 - 2i}}{{13}} = \dfrac{3}{{13}} - \dfrac{{2i}}{{13}}