Solveeit Logo

Question

Question: Find maximum and minimum value of \(\sin x.\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\...

Find maximum and minimum value of sinx.sin(60x)sin(60+x)\sin x.\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right)

Explanation

Solution

We are having a trigonometric equation as: sinx.sin(60x)sin(60+x)\sin x.\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right). The expression consists of sinA.sinB.sinC\sin A.\sin B.\sin C, which can be written as: sinA.(sinB.sinC)\sin A.\left( \sin B.\sin C \right). Now, divide and multiply the expression by 2 to form an identity of cosine subtraction, i.e. cos(AB)cos(A+B)=2sinA.sinB\cos \left( A-B \right)-\cos \left( A+B \right)=2\sin A.\sin B. Simplify the expression by substitution the value of cosine of standard angle, if any and then using double angle relation convert the whole expression in terms of sine, i.e. cos2x=12sin2x\cos 2x=1-2{{\sin }^{2}}x. In the end, try to form an identity of sin3x\sin 3x and using the domain of sine function, i.e. [-1, 1], find the minimum value or the expression.

Complete step-by-step solution:
As we are given the following expression: sinx.sin(60x)sin(60+x).................(1)\sin x.\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right).................(1)
We can write equation (1) as:
\sin x.\left\\{ \sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right) \right\\}.............(2)
Now, multiply and divide equation (2) by 2, we get:
\dfrac{1}{2}\sin x\left\\{ 2\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right) \right\\}..............(3)
As we know that: cos(AB)cos(A+B)=2sinA.sinB\cos \left( A-B \right)-\cos \left( A+B \right)=2\sin A.\sin B
So, by applying cosine subtraction identity to the equation (3), we get:
\begin{aligned} & \Rightarrow \dfrac{1}{2}\sin x\left\\{ \cos \left( {{60}^{\circ }}-x-{{60}^{\circ }}-x \right)-\cos \left( {{60}^{\circ }}-x+{{60}^{\circ }}+x \right) \right\\} \\\ & \Rightarrow \dfrac{1}{2}\sin x\left\\{ \cos \left( -2x \right)-\cos \left( {{120}^{\circ }} \right) \right\\}..............(4) \\\ \end{aligned}
Since, cos(θ)=cosθ;cos(120)=12\cos \left( -\theta \right)=\cos \theta ;\cos \left( {{120}^{\circ }} \right)=-\dfrac{1}{2}
So, by putting the values in equation (4), we get:
\begin{aligned} & \Rightarrow \dfrac{1}{2}\sin x\left\\{ \cos \left( 2x \right)-\left( -\dfrac{1}{2} \right) \right\\} \\\ & \Rightarrow \dfrac{1}{2}\sin x\left\\{ \cos \left( 2x \right)+\dfrac{1}{2} \right\\}...........(5) \\\ \end{aligned}
As we know that: cos2x=12sin2x\cos 2x=1-2{{\sin }^{2}}x
So, we can write equation (5) as:
\begin{aligned} & \Rightarrow \dfrac{1}{2}\sin x\left\\{ 1-2{{\sin }^{2}}x+\dfrac{1}{2} \right\\} \\\ & \Rightarrow \dfrac{1}{2}\sin x\left\\{ \dfrac{3}{2}-2{{\sin }^{2}}x \right\\} \\\ & \Rightarrow \left\\{ \dfrac{3}{4}\sin x-{{\sin }^{3}}x \right\\} \\\ & \Rightarrow \dfrac{3\sin x-{4{\sin }^{3}}x}{4}...............(6) \\\ \end{aligned}
As we know that: sin3θ=3sinθ4sin3θ\sin 3\theta =3\sin \theta -4{{\sin }^{3}}\theta
So, by applying the identity to equation (6), we get:
sinx.sin(60x)sin(60+x)=14sin3x\sin x.\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right)=\dfrac{1}{4}\sin 3x
Now, we need to find the minimum value of 14sin3x\dfrac{1}{4}\sin 3x
As we know that domain of sine of an angle is [-1, 1], so we can write that:
1sinθ1-1 \le \sin \theta \le 1
Using this result for sin3x\sin 3x, we can write:
1sin3x1-1\le \sin 3x \le 1
Now, divide the whole equation by 4 to get a relation for 14sin3x\dfrac{1}{4}\sin 3x, we get:
1414sin3x14-\dfrac{1}{4} \le \dfrac{1}{4}\sin 3x \le \dfrac{1}{4}
So, the minimum value of 14sin3x\dfrac{1}{4}\sin 3x is 14-\dfrac{1}{4}
Therefore, minimum value of sinx.sin(60x)sin(60+x)\sin x.\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right) is 14-\dfrac{1}{4}.

Note: There is another way to solve an expression in the form ofsinθ.sin(60θ)sin(60+θ)\sin \theta .\sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right). It is an important result or identity of trigonometry, i.e.
sinθ.sin(60θ)sin(60+θ)=14sin3θ\sin \theta .\sin \left( {{60}^{\circ }}-\theta \right)\sin \left( {{60}^{\circ }}+\theta \right)=\dfrac{1}{4}\sin 3\theta
By using the above result for the expression: sinx.sin(60x)sin(60+x)\sin x.\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right), we can write:
sinx.sin(60x)sin(60+x)=14sin3x\sin x.\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right)=\dfrac{1}{4}\sin 3x
Now, we need to find the minimum value of 14sin3x\dfrac{1}{4}\sin 3x
As we know that domain of sine of an angle is [-1, 1], so we can write that:
1sinθ1-1 \le \sin \theta \le 1
Using this result for sin3x\sin 3x, we can write:
1sin3x1-1 \le\sin 3x \le 1
Now, divide the whole equation by 4 to get a relation for 14sin3x\dfrac{1}{4}\sin 3x, we get:
1414sin3x14-\dfrac{1}{4} \le \dfrac{1}{4}\sin 3x \le \dfrac{1}{4}
So, the minimum value of 14sin3x\dfrac{1}{4}\sin 3x is 14-\dfrac{1}{4}
Therefore, minimum value of sinx.sin(60x)sin(60+x)\sin x.\sin \left( {{60}^{\circ }}-x \right)\sin \left( {{60}^{\circ }}+x \right) is 14-\dfrac{1}{4}.