Solveeit Logo

Question

Question: Find matrix \(A\) such that \(\left[ {\begin{array}{*{20}{c}} 2&{ - 1} \\\ 1&0 \\\ { -...

Find matrix AA such that \left[ {\begin{array}{*{20}{c}} 2&{ - 1} \\\ 1&0 \\\ { - 3}&4 \end{array}} \right]A = \left[ {\begin{array}{*{20}{c}} { - 1}&{ - 8} \\\ 1&{ - 2} \\\ 9&{22} \end{array}} \right]

Explanation

Solution

In this question, the multiplication of two matrices are given and its product as well. Here one thing that is much more important about a matrix is “order of a matrix”. So, multiplication of two matrices will be only possible when (Ma×b×Rb×c)\left( {{M_{a \times b }} \times {R_{ b \times c}}} \right) column of first matrix will be equal to row of second matrix. To solve it we have to use this property.

Step-by-step Solution:
Given:\left[ {\begin{array}{*{20}{c}} 2&{ - 1} \\\ 1&0 \\\ { - 3}&4 \end{array}} \right]A = \left[ {\begin{array}{*{20}{c}} { - 1}&{ - 8} \\\ 1&{ - 2} \\\ 9&{22} \end{array}} \right] so find AA
As the multiplication of two matrices is given in which the first matrix is the order of 3×23 \times 2 . Second matrix AA will be the order of 2×n2 \times n where nn be a number. When we look at the multiplication of two matrices and its result will reach at the conclusion:
{\left[ {\begin{array}{*{20}{c}} 2&{ - 1} \\\ 1&0 \\\ { - 3}&4 \end{array}} \right]_{3 \times 2}}{\left[ {\begin{array}{*{20}{c}} {}&{} \\\ {}&{} \\\ {}&{} \end{array}} \right]_{2 \times n}} = {\left[ {\begin{array}{*{20}{c}} { - 1}&{ - 8} \\\ 1&{ - 2} \\\ 9&{22} \end{array}} \right]_{3 \times 2}} \\\ \because 3 \times 2,2 \times n = 3 \times 2 \\\
\therefore Value of n=2n = 2
So, matrix AA will be order of 2 \times 2,A = \left( {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}} \\\ {{a_{21}}}&{{a_{22}}} \end{array}} \right)
\because \left[ {\begin{array}{*{20}{c}} 2&{ - 1} \\\ 1&0 \\\ { - 3}&4 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}} \\\ {{a_{21}}}&{{a_{22}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - 1}&{ - 8} \\\ 1&{ - 2} \\\ 9&{22} \end{array}} \right]
Performing multiplication operation,
\left[ {\begin{array}{*{20}{c}} {2{a_{11}} - {a_{21}}}&{2{a_{12}} - {a_{22}}} \\\ {{a_{11}} + 0}&{{a_{12}} + 0} \\\ { - 3{a_{11}} + 4{a_{21}}}&{ - 3{a_{12}} + 4{a_{22}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - 1}&{ - 8} \\\ 1&{ - 2} \\\ 9&{22} \end{array}} \right]
Now, according to position of elements in the matrix, we equate them correspondingly,
2a11a21=1(1) 2a12a22=8(2) a11=1(3) a12=2(4) 3a11+4a21=9(5) 3a12+4a22=22(6)  \Rightarrow 2{a_{11}} - {a_{21}} = - 1 \to \left( 1 \right) \\\ \Rightarrow 2{a_{12}} - {a_{22}} = - 8 \to \left( 2 \right) \\\ \Rightarrow {a_{11}} = 1 \to \left( 3 \right) \\\ \Rightarrow {a_{12}} = - 2 \to \left( 4 \right) \\\ \Rightarrow - 3{a_{11}} + 4{a_{21}} = 9 \to \left( 5 \right) \\\ \Rightarrow - 3{a_{12}} + 4{a_{22}} = 22 \to \left( 6 \right) \\\
Now, putting the value of equation (3)\left( 3 \right) in equation(1)\left( 1 \right), we have
2a11a21=1 2×1a21=1 a21=12 a21=3 a21=3  \because 2{a_{11}} - {a_{21}} = - 1 \\\ \Rightarrow 2 \times 1 - {a_{21}} = - 1 \\\ \Rightarrow - {a_{21}} = - 1 - 2 \\\ \Rightarrow - {a_{21}} = - 3 \\\ \therefore {a_{21}} = 3 \\\
Now, putting the value of equation (4)\left( 4 \right) in equation(2)\left( 2 \right), we have
2a12a22=8 2×(2)a22=8 a22=8+4 a22=4 a22=4  \because 2{a_{12}} - {a_{22}} = - 8 \\\ \Rightarrow 2 \times \left( { - 2} \right) - {a_{22}} = - 8 \\\ \Rightarrow - {a_{22}} = - 8 + 4 \\\ \Rightarrow - {a_{22}} = - 4 \\\ \therefore {a_{22}} = 4 \\\
So, matrix A = \left[ {\begin{array}{*{20}{c}} 1&{ - 2} \\\ 3&4 \end{array}} \right]

Note:
This is a matrix question so for a student matrix multiplication should be known. So, order is important. After that it can be solved very easily.