Solveeit Logo

Question

Question: Find locus of centroid of a triangle whose vertices are given by (t,t²), (1,0), (t², 2t +1) where t ...

Find locus of centroid of a triangle whose vertices are given by (t,t²), (1,0), (t², 2t +1) where t is real parameter.

A

9x² - 18xy + 9y² - 6x + 3y + 1 = 0

B

9x² + 18xy + 9y² - 6x + 3y + 1 = 0

C

9x² - 18xy + 9y² + 6x - 3y + 1 = 0

D

9x² + 18xy + 9y² + 6x - 3y + 1 = 0

Answer

9x² - 18xy + 9y² - 6x + 3y + 1 = 0

Explanation

Solution

  • The vertices of the triangle are given as A=(t,t2)A = (t, t^2), B=(1,0)B = (1, 0), and C=(t2,2t+1)C = (t^2, 2t + 1).
  • Let the centroid of the triangle be G=(x,y)G = (x, y). The coordinates of the centroid are given by the average of the coordinates of the vertices: x=x1+x2+x33x = \frac{x_1 + x_2 + x_3}{3} y=y1+y2+y33y = \frac{y_1 + y_2 + y_3}{3}
  • Substituting the coordinates of the vertices: x=t+1+t23x = \frac{t + 1 + t^2}{3} y=t2+0+(2t+1)3y = \frac{t^2 + 0 + (2t + 1)}{3}
  • This gives us the parametric equations for the locus of the centroid:
    1. 3x=t2+t+13x = t^2 + t + 1
    2. 3y=t2+2t+13y = t^2 + 2t + 1
  • Subtract equation (1) from equation (2) to eliminate t2t^2: 3y3x=(t2+2t+1)(t2+t+1)3y - 3x = (t^2 + 2t + 1) - (t^2 + t + 1) 3(yx)=t3(y - x) = t
  • Substitute t=3(yx)t = 3(y - x) back into equation (1): 3x=(3(yx))2+(3(yx))+13x = (3(y - x))^2 + (3(y - x)) + 1 3x=9(yx)2+3(yx)+13x = 9(y - x)^2 + 3(y - x) + 1 3x=9(y22xy+x2)+3y3x+13x = 9(y^2 - 2xy + x^2) + 3y - 3x + 1 3x=9y218xy+9x2+3y3x+13x = 9y^2 - 18xy + 9x^2 + 3y - 3x + 1
  • Rearrange the terms to form the equation of the locus: 9x218xy+9y26x+3y+1=09x^2 - 18xy + 9y^2 - 6x + 3y + 1 = 0
  • The discriminant B24AC=(18)24(9)(9)=0B^2 - 4AC = (-18)^2 - 4(9)(9) = 0, indicating the locus is a parabola.