Solveeit Logo

Question

Question: Find local maxima and minima of f(x)=e^x(1+x^2)...

Find local maxima and minima of f(x)=e^x(1+x^2)

Answer

No local maxima and no local minima

Explanation

Solution

To find the local maxima and minima of the function f(x)=ex(1+x2)f(x) = e^x(1+x^2), we follow these steps:

  1. Find the first derivative, f(x)f'(x): Given f(x)=ex(1+x2)f(x) = e^x(1+x^2). Using the product rule, (uv)=uv+uv(uv)' = u'v + uv', where u=exu = e^x and v=1+x2v = 1+x^2: u=exu' = e^x v=2xv' = 2x f(x)=ex(1+x2)+ex(2x)f'(x) = e^x(1+x^2) + e^x(2x) f(x)=ex(1+x2+2x)f'(x) = e^x(1+x^2+2x) f(x)=ex(x2+2x+1)f'(x) = e^x(x^2+2x+1) f(x)=ex(x+1)2f'(x) = e^x(x+1)^2

  2. Find the critical points by setting f(x)=0f'(x) = 0: ex(x+1)2=0e^x(x+1)^2 = 0 Since ex>0e^x > 0 for all real xx, we must have: (x+1)2=0(x+1)^2 = 0 x+1=0x+1 = 0 x=1x = -1 So, there is only one critical point at x=1x = -1.

  3. Apply the first derivative test: To determine if x=1x=-1 is a local maximum, local minimum, or neither, we examine the sign of f(x)f'(x) around x=1x=-1. f(x)=ex(x+1)2f'(x) = e^x(x+1)^2.

    • For x<1x < -1 (e.g., x=2x=-2): f(2)=e2(2+1)2=e2(1)2=e2(1)=1e2>0f'(-2) = e^{-2}(-2+1)^2 = e^{-2}(-1)^2 = e^{-2}(1) = \frac{1}{e^2} > 0. This means f(x)f(x) is increasing for x<1x < -1.
    • For x>1x > -1 (e.g., x=0x=0): f(0)=e0(0+1)2=1(1)2=1>0f'(0) = e^{0}(0+1)^2 = 1(1)^2 = 1 > 0. This means f(x)f(x) is increasing for x>1x > -1.

    Since f(x)f'(x) is positive on both sides of x=1x=-1, the function is strictly increasing through x=1x=-1. Therefore, x=1x=-1 is neither a local maximum nor a local minimum.

Conclusion: The function f(x)=ex(1+x2)f(x) = e^x(1+x^2) has no local maxima and no local minima.