Question
Question: Find local maxima and local minima f(x)=e^x(1-x)^3...
Find local maxima and local minima f(x)=e^x(1-x)^3
Local maximum at x=-2, value 27/e^2. No local minimum.
Solution
To find the local maxima and local minima of the function f(x)=ex(1−x)3, we follow these steps:
-
Find the first derivative, f′(x):
Using the product rule (uv)′=u′v+uv′, where u=ex and v=(1−x)3:
u′=ex
v′=3(1−x)2⋅(−1)=−3(1−x)2
So,
f′(x)=ex(1−x)3+ex(−3(1−x)2)
Factor out ex(1−x)2:
f′(x)=ex(1−x)2[(1−x)−3]
f′(x)=ex(1−x)2(−x−2)
f′(x)=−ex(1−x)2(x+2) -
Find the critical points by setting f′(x)=0:
−ex(1−x)2(x+2)=0
Since ex>0 for all real x, we must have:
(1−x)2(x+2)=0
This gives two critical points:
1−x=0⟹x=1
x+2=0⟹x=−2 -
Find the second derivative, f′′(x):
First, expand f′(x):
f′(x)=−ex(x2−2x+1)(x+2)
f′(x)=−ex(x3+2x2−2x2−4x+x+2)
f′(x)=−ex(x3−3x+2)
Now, differentiate f′(x) using the product rule again:
f′′(x)=−[ex(x3−3x+2)+ex(3x2−3)]
f′′(x)=−ex(x3+3x2−3x+2−3)
f′′(x)=−ex(x3+3x2−3x−1) -
Apply the second derivative test:
-
At x=−2:
Substitute x=−2 into f′′(x):
f′′(−2)=−e−2((−2)3+3(−2)2−3(−2)−1)
f′′(−2)=−e−2(−8+3(4)+6−1)
f′′(−2)=−e−2(−8+12+6−1)
f′′(−2)=−e−2(9)
f′′(−2)=−9e−2
Since f′′(−2)<0, x=−2 is a point of local maximum. -
At x=1:
Substitute x=1 into f′′(x):
f′′(1)=−e1(13+3(1)2−3(1)−1)
f′′(1)=−e(1+3−3−1)
f′′(1)=−e(0)
f′′(1)=0
Since f′′(1)=0, the second derivative test is inconclusive. We use the first derivative test.
-
-
Apply the first derivative test for x=1:
Recall f′(x)=−ex(1−x)2(x+2).
The term (1−x)2 is always non-negative. ex is always positive. So the sign of f′(x) depends on −(x+2).- For x<1 (e.g., x=0.5): x+2=2.5>0. So f′(x)=−e0.5(1−0.5)2(2.5)<0.
- For x>1 (e.g., x=1.5): x+2=3.5>0. So f′(x)=−e1.5(1−1.5)2(3.5)<0.
Since f′(x) does not change sign around x=1 (it remains negative), x=1 is an inflection point, not a local extremum. Therefore, there is no local minimum.
-
Calculate the local maximum value:
The local maximum occurs at x=−2. Substitute this value back into the original function f(x)=ex(1−x)3:
f(−2)=e−2(1−(−2))3
f(−2)=e−2(1+2)3
f(−2)=e−2(3)3
f(−2)=27e−2
f(−2)=e227
The function has a local maximum at x=−2 with value e227. There is no local minimum.