Question
Question: Find linear expression of sininversesinx for x belongs to [-2029π/2,-2025π/2]...
Find linear expression of sininversesinx for x belongs to [-2029π/2,-2025π/2]

Answer
sin⁻¹(sin x) = x + 1014π, x ∈ [-2029π/2, -2027π/2],
- x - 1013π, x ∈ [-2027π/2, -2025π/2].
Explanation
Solution
Solution Explanation:
For any real x, the identity
sin−1(sinx)=(−1)n(x−nπ)holds if
x∈[nπ−2π,nπ+2π].The given interval is
x∈[−22029π,−22025π],which is of length 2π. This interval splits naturally into two consecutive subintervals where the formula applies with different integers n.
- First subinterval:
Let x∈[−22029π,−22027π]. We choose n such that
nπ−2π=−22029π.Multiply by 2:
2nπ−π=−2029π⟹2nπ=−2029π+π=−2028π.Hence,
n=−1014.Since −1014 is even, (−1)−1014=1. Thus,
sin−1(sinx)=x−(−1014π)=x+1014πfor x∈[−22029π,−22027π].- Second subinterval:
Let x∈[−22027π,−22025π]. Here, select n such that
nπ+2π=−22025π.Multiply by 2:
2nπ+π=−2025π⟹2nπ=−2025π−π=−2026π,so,
n=−1013.Since −1013 is odd, (−1)−1013=−1. Hence,
sin−1(sinx)=−(x−(−1013π))=−(x+1013π)=−x−1013πfor x∈[−22027π,−22025π].