Solveeit Logo

Question

Question: Find linear expression of $\sin^{-1}(\sin x)$ for $x$ belongs to $[2027\pi/2,2029\pi/2]$...

Find linear expression of sin1(sinx)\sin^{-1}(\sin x) for xx belongs to [2027π/2,2029π/2][2027\pi/2,2029\pi/2]

Answer

x1014πx-1014\pi

Explanation

Solution

For sin1(sinx)\sin^{-1}(\sin x), use the formula:

sin1(sinx)=(1)n(xnπ)\sin^{-1}(\sin x)= (-1)^n (x - n\pi) for x[nππ2,nπ+π2]x\in [n\pi-\frac{\pi}{2},\, n\pi+\frac{\pi}{2}].

For x[2027π2,2029π2]x \in \left[\frac{2027\pi}{2}, \frac{2029\pi}{2}\right]:

Determine nn such that:

nππ2=2027π2n\pi - \frac{\pi}{2} = \frac{2027\pi}{2} and nπ+π2=2029π2n\pi + \frac{\pi}{2} = \frac{2029\pi}{2}.

Solving,

nππ2=2027π2    2nππ=2027π    2nπ=2028π    n=1014n\pi - \frac{\pi}{2} = \frac{2027\pi}{2} \implies 2n\pi - \pi = 2027\pi \implies 2n\pi = 2028\pi \implies n = 1014.

Since n=1014n = 1014 (an even number), (1)1014=1(-1)^{1014} = 1. Therefore,

sin1(sinx)=x1014π\sin^{-1}(\sin x) = x - 1014\pi.