Question
Question: Find linear expression of $\sin^{-1}(\sin x)$ for $x$ belongs to $[2027\pi/2,2029\pi/2]$...
Find linear expression of sin−1(sinx) for x belongs to [2027π/2,2029π/2]
Answer
x−1014π
Explanation
Solution
For sin−1(sinx), use the formula:
sin−1(sinx)=(−1)n(x−nπ) for x∈[nπ−2π,nπ+2π].
For x∈[22027π,22029π]:
Determine n such that:
nπ−2π=22027π and nπ+2π=22029π.
Solving,
nπ−2π=22027π⟹2nπ−π=2027π⟹2nπ=2028π⟹n=1014.
Since n=1014 (an even number), (−1)1014=1. Therefore,
sin−1(sinx)=x−1014π.