Solveeit Logo

Question

Question: Find linear expression of $\sin^{-1}(\sin x)$ for $x \in [\frac{2025\pi}{2},\frac{2027\pi}{2}]$...

Find linear expression of sin1(sinx)\sin^{-1}(\sin x) for x[2025π2,2027π2]x \in [\frac{2025\pi}{2},\frac{2027\pi}{2}]

Answer

1013π - x

Explanation

Solution

  1. Use the formula sin1(sinx)=(1)n(xnπ)\sin^{-1}(\sin x)= (-1)^n (x-n\pi) for x[nππ2,nπ+π2]x\in [n\pi-\frac{\pi}{2}, n\pi+\frac{\pi}{2}].

  2. For x[2025π2,2027π2]x\in \left[\frac{2025\pi}{2},\frac{2027\pi}{2}\right], set nππ2=2025π2n\pi-\frac{\pi}{2}=\frac{2025\pi}{2} to get n=1013n=1013.

  3. Since 10131013 is odd, (1)1013=1(-1)^{1013}=-1.

  4. Thus, sin1(sinx)=(x1013π)=1013πx\sin^{-1}(\sin x)= - (x-1013\pi)=1013\pi - x.