Solveeit Logo

Question

Question: Find limit x tends to 0 (x-tan^-1 x) ÷x^3...

Find limit x tends to 0 (x-tan^-1 x) ÷x^3

Answer

1/3

Explanation

Solution

Let the given limit be LL.

L=limx0xtan1xx3L = \lim_{x \to 0} \frac{x - \tan^{-1} x}{x^3}

As x0x \to 0, the numerator xtan1x0tan1(0)=00=0x - \tan^{-1} x \to 0 - \tan^{-1}(0) = 0 - 0 = 0. As x0x \to 0, the denominator x303=0x^3 \to 0^3 = 0. The limit is of the indeterminate form 00\frac{0}{0}. We can apply L'Hopital's Rule.

Applying L'Hopital's Rule, we differentiate the numerator and the denominator with respect to xx: Derivative of the numerator: ddx(xtan1x)=111+x2\frac{d}{dx}(x - \tan^{-1} x) = 1 - \frac{1}{1+x^2}. Derivative of the denominator: ddx(x3)=3x2\frac{d}{dx}(x^3) = 3x^2.

So, the limit becomes: L=limx0111+x23x2L = \lim_{x \to 0} \frac{1 - \frac{1}{1+x^2}}{3x^2}

Now, simplify the numerator: 111+x2=(1+x2)11+x2=x21+x21 - \frac{1}{1+x^2} = \frac{(1+x^2) - 1}{1+x^2} = \frac{x^2}{1+x^2}

Substitute this back into the limit expression: L=limx0x21+x23x2L = \lim_{x \to 0} \frac{\frac{x^2}{1+x^2}}{3x^2} L=limx0x2(1+x2)(3x2)L = \lim_{x \to 0} \frac{x^2}{(1+x^2)(3x^2)}

Since x0x \to 0, x0x \neq 0, so we can cancel the x2x^2 term from the numerator and the denominator: L=limx013(1+x2)L = \lim_{x \to 0} \frac{1}{3(1+x^2)}

Now, substitute x=0x=0 into the expression: L=13(1+02)=13(1)=13L = \frac{1}{3(1+0^2)} = \frac{1}{3(1)} = \frac{1}{3}

Alternatively, using Taylor series expansion: The Taylor series expansion of tan1x\tan^{-1} x around x=0x=0 is tan1x=xx33+x55\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots for x1|x| \le 1. Substitute this into the numerator: xtan1x=x(xx33+x55)=x33x55+x - \tan^{-1} x = x - \left(x - \frac{x^3}{3} + \frac{x^5}{5} - \dots\right) = \frac{x^3}{3} - \frac{x^5}{5} + \dots

Now divide by x3x^3: xtan1xx3=x33x55+x3=13x25+\frac{x - \tan^{-1} x}{x^3} = \frac{\frac{x^3}{3} - \frac{x^5}{5} + \dots}{x^3} = \frac{1}{3} - \frac{x^2}{5} + \dots

Take the limit as x0x \to 0: limx0(13x25+)=130+0=13\lim_{x \to 0} \left(\frac{1}{3} - \frac{x^2}{5} + \dots\right) = \frac{1}{3} - 0 + 0 - \dots = \frac{1}{3}

Both methods give the same result.

The limit is of the form 0/00/0. Applying L'Hopital's rule: limx0xtan1xx3=limx0ddx(xtan1x)ddx(x3)\lim_{x \to 0} \frac{x - \tan^{-1} x}{x^3} = \lim_{x \to 0} \frac{\frac{d}{dx}(x - \tan^{-1} x)}{\frac{d}{dx}(x^3)} =limx0111+x23x2= \lim_{x \to 0} \frac{1 - \frac{1}{1+x^2}}{3x^2} =limx01+x211+x23x2= \lim_{x \to 0} \frac{\frac{1+x^2-1}{1+x^2}}{3x^2} =limx0x2(1+x2)(3x2)= \lim_{x \to 0} \frac{x^2}{(1+x^2)(3x^2)} Cancel x2x^2 (since x0x \neq 0 in the limit): =limx013(1+x2)= \lim_{x \to 0} \frac{1}{3(1+x^2)} Substitute x=0x=0: =13(1+02)=13= \frac{1}{3(1+0^2)} = \frac{1}{3}