Question
Mathematics Question on Limits
Find limx→1 f(x) where { x2 -1, x≤1 -x2-1, x>1
Answer
The given function is
f(x) ={ x2 -1, x≤1 -x2-1, x>1
limx→1− f(x) =limx→1 [x2 -1] = 12 -1 =1-1 = 0
limx→1+ f(x) = limx→1 [-x2 -1] = -12 -1 =-1-1 = -2
It is observed that limx→1− f(x) ≠limx→1+ f(x).
Hence , limx→1 f(x) does not exist.