Question
Mathematics Question on Limits
Find limx→0 f(x) and limx→1 f(x) where { 2x+3, x≤0 3 (x+1), x>0
Answer
The given function is
f(x) = { 2x+3, x≤0 3(x+1) x>0
limx→0− f(x) = limx→0 [2x+3] = (2(0)+3=3
limx→0− f(x) = limx→0 3(x+1) = 3(0+1)= 3
∴ limx→0− f(x) = limx→0+ f(x) = limx→0 f(x) = 3
limx→1− f(x) = limx→0+ 3(x+1) = 3(1+1) =6
limx→1− f(x) = limx→1 3(x+1) = 3(1+1) =6
∴ limx→1− f(x) = limx→1+ f(x) = limx→1f(x) = 6