Solveeit Logo

Question

Question: Find \(\left| \overset{\to }{\mathop{x}}\, \right|\) if for a unit vector \(\overset{\to }{\mathop{a...

Find x\left| \overset{\to }{\mathop{x}}\, \right| if for a unit vector a\overset{\to }{\mathop{a}}\,, (xa).(x+a)=15\left( \overset{\to }{\mathop{x}}\,-\overset{\to }{\mathop{a}}\, \right).\left( \overset{\to }{\mathop{x}}\,+\overset{\to }{\mathop{a}}\, \right)=15

Explanation

Solution

Since we have the given expression (xa).(x+a)=15\left( \overset{\to }{\mathop{x}}\,-\overset{\to }{\mathop{a}}\, \right).\left( \overset{\to }{\mathop{x}}\,+\overset{\to }{\mathop{a}}\, \right)=15, firstly we need to simplify the equation by solving the brackets and get a simple equation in terms of x\left| \overset{\to }{\mathop{x}}\, \right| and a\left| \overset{\to }{\mathop{a}}\, \right|. Then, substitute the value of a\left| \overset{\to }{\mathop{a}}\, \right| in the equation and then get the value of x\left| \overset{\to }{\mathop{x}}\, \right|.

Complete step by step answer:
We are given the following expression:
(xa).(x+a)=15......(1)\left( \overset{\to }{\mathop{x}}\,-\overset{\to }{\mathop{a}}\, \right).\left( \overset{\to }{\mathop{x}}\,+\overset{\to }{\mathop{a}}\, \right)=15......(1)
Now, simplify equation (1) by opening the brackets and multiplying both the vectors, we get:
(x.x+x.ax.aa.a)=15 (x.xa.a)=15......(2) \begin{aligned} & \Rightarrow \left( \overset{\to }{\mathop{x}}\,.\overset{\to }{\mathop{x}}\,+\overset{\to }{\mathop{x}}\,.\overset{\to }{\mathop{a}}\,-\overset{\to }{\mathop{x}}\,.\overset{\to }{\mathop{a}}\,-\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{a}}\, \right)=15 \\\ & \Rightarrow \left( \overset{\to }{\mathop{x}}\,.\overset{\to }{\mathop{x}}\,-\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{a}}\, \right)=15......(2) \\\ \end{aligned}
Since, we are squaring both the vectors, so square of a vector is equal to square of its magnitude, i.e. (x)2=x2{{\left( \overset{\to }{\mathop{x}}\, \right)}^{2}}={{\left| \overset{\to }{\mathop{x}}\, \right|}^{2}}
So, we can write equation (2) as:
(x2a2)=15......(3)\Rightarrow \left( {{\left| \overset{\to }{\mathop{x}}\, \right|}^{2}}-{{\left| \overset{\to }{\mathop{a}}\, \right|}^{2}} \right)=15......(3)
Since it is mentioned in the question that a\overset{\to }{\mathop{a}}\, is a unit vector, therefore, we have a=1\left| \overset{\to }{\mathop{a}}\, \right|=1
Now, by putting the value of a\left| \overset{\to }{\mathop{a}}\, \right|in equation (2), we can write:
x2(1)2=15 x21=15 x2=16 x=4 \begin{aligned} & \Rightarrow {{\left| \overset{\to }{\mathop{x}}\, \right|}^{2}}-{{\left( 1 \right)}^{2}}=15 \\\ & \Rightarrow {{\left| \overset{\to }{\mathop{x}}\, \right|}^{2}}-1=15 \\\ & \Rightarrow {{\left| \overset{\to }{\mathop{x}}\, \right|}^{2}}=16 \\\ & \Rightarrow \left| \overset{\to }{\mathop{x}}\, \right|=4 \\\ \end{aligned}

Hence, the value of x\left| \overset{\to }{\mathop{x}}\, \right| is 4.

Note: As we have the expression (xa).(x+a)=15\left( \overset{\to }{\mathop{x}}\,-\overset{\to }{\mathop{a}}\, \right).\left( \overset{\to }{\mathop{x}}\,+\overset{\to }{\mathop{a}}\, \right)=15 in the form of (xa)(xb)\left( x-a \right)\left( x-b \right), we can apply the identity: x2a2=(xa)(xb){{x}^{2}}-{{a}^{2}}=\left( x-a \right)\left( x-b \right).But instead of (x)2{{\left( \overset{\to }{\mathop{x}}\, \right)}^{2}}we need to write square of magnitude of the vector, i.e. x2{{\left| \overset{\to }{\mathop{x}}\, \right|}^{2}}. So, do not directly use the identity on the vectors, use it for the magnitude of vectors.
Also, when we get x2=16{{\left| \overset{\to }{\mathop{x}}\, \right|}^{2}}=16, we get two values of x\left| \overset{\to }{\mathop{x}}\, \right| i.e. +4 and -4. But magnitude cannot be negative. So, we have to neglect the negative value of x\left| \overset{\to }{\mathop{x}}\, \right|, i.e. -4. Hence, we have x\left| \overset{\to }{\mathop{x}}\, \right| equal to 4.