Solveeit Logo

Question

Mathematics Question on Vector Algebra

Find λλ and μ μ if (2i^+6j^+7k^)×(i^+λj^+μk^)=0.(2\hat{i}+6\hat{j}+7\hat{k})\times(\hat{i}+λ\hat{j}+μ\hat{k})=\vec{0}.

Answer

(2i^+6j^+7k^)×(i^+λj^+μk^)=0.(2\hat{i}+6\hat{j}+7\hat{k})\times(\hat{i}+λ\hat{j}+μ\hat{k})=\vec{0}.
i^j^k^ 2627\1λµ=0i^+0j^+0k^⇒\begin{vmatrix} \hat{i} & \hat{j} & \hat{k}\\\ 2& 6 & 27 \\\1& \lambda& µ\end{vmatrix}|=0\hat{i}+0\hat{j}+0\hat{k}
i^(6μ27λ)j^(2μ27)+k^(27λ6)=0i^+0j^+0k^⇒\hat{i}(6μ-27\lambda)-\hat{j}(2μ-27)+\hat{k}(27λ-6)=0\hat{i}+0\hat{j}+0\hat{k}
On comparing the corresponding components,we have:
6μ27λ=06μ-27λ=0
2μ27=02μ-27=0
2λ6=02λ-6=0
Now,
2λ6=0λ=32λ-6=0⇒λ=3
2μ27=0μ=2722μ-27=0⇒μ=\frac{27}{2}
Hence,λ=3  and  μ=272.Hence,λ=3 \space and \space μ=\frac{27}{2}.