Solveeit Logo

Question

Question: Find k such that the given function is continuous \[f\left( x \right)=\left\\{ \begin{matrix} & ...

Find k such that the given function is continuous f\left( x \right)=\left\\{ \begin{matrix} & \dfrac{\sqrt{3}\sin x+\cos x}{x+\dfrac{\pi }{6}},&x;\ne \dfrac{\pi }{6} \\\ & k,&x;=-\dfrac{\pi }{6} \\\ \end{matrix} \right\\} at x=π6x= \dfrac{\pi }{6}.

Explanation

Solution

In this type of question we have to use the concept of continuity of a function along with some values as well as rules of trigonometric functions. We know that if a function f(x)f\left( x \right) is continuous at x=ax=a then limxaf(x)=f(a)\displaystyle \lim_{x \to a}f\left( x \right)=f\left( a \right). Also here we have to use one of the rule of continuity that is limx0sinxx=1\displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1. Also we have to consider some values of the trigonometric functions that are sin(π6)=12&cos(π6)=32\sin \left( \dfrac{\pi }{6} \right)=\dfrac{1}{2}\And \cos \left( \dfrac{\pi }{6} \right)=\dfrac{\sqrt{3}}{2}. Also we have to use the trigonometric formula, sin(A+B)=sinAcosB+cosAsinB\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B.

Complete step-by-step solution:
Now, here we have to find the value of k such that the given function f(x)f\left( x \right) is continuous at x=π6x=\dfrac{\pi }{6} and f\left( x \right)=\left\\{ \begin{matrix} & \dfrac{\sqrt{3}\sin x+\cos x}{x+\dfrac{\pi }{6}},&x;\ne \dfrac{\pi }{6} \\\ & k,&x;=-\dfrac{\pi }{6} \\\ \end{matrix} \right\\} at x=π6x=\dfrac{\pi }{6}
As f(x)f\left( x \right) is continuous at x=π6x=\dfrac{\pi }{6} we can write
limxπ6f(x)=f(π6)\Rightarrow \displaystyle \lim_{x \to \dfrac{\pi }{6}}f\left( x \right)=f\left( \dfrac{\pi }{6} \right)
Also, we have given that, f(x)=kf\left( x \right)=k at x=π6x=-\dfrac{\pi }{6}
Thus we can write,
f(π6)=k\Rightarrow f\left( -\dfrac{\pi }{6} \right)=k
Now, if we directly substitute the value of xx in the function f(x)=3sinx+cosxx+π6f\left( x \right)=\dfrac{\sqrt{3}\sin x+\cos x}{x+\dfrac{\pi }{6}} then the denominator of f(x)f\left( x \right) becomes zero.
Thus let us consider.
limx  π6f(x)=k\Rightarrow \displaystyle \lim_{x \to \text{ }-\text{ }\dfrac{\pi }{6}}f\left( x \right)=k
limx  π63sinx+cosxx+π6=k\Rightarrow \displaystyle \lim_{x \to \text{ }-\text{ }\dfrac{\pi }{6}}\dfrac{\sqrt{3}\sin x+\cos x}{x+\dfrac{\pi }{6}}=k
limx  π62(32sinx+12cosx)x+π6=k\Rightarrow \displaystyle \lim_{x \to \text{ }-\text{ }\dfrac{\pi }{6}}\dfrac{2\left( \dfrac{\sqrt{3}}{2}\sin x+\dfrac{1}{2}\cos x \right)}{x+\dfrac{\pi }{6}}=k
Now, by using sin(π6)=12&cos(π6)=32\sin \left( \dfrac{\pi }{6} \right)=\dfrac{1}{2}\And \cos \left( \dfrac{\pi }{6} \right)=\dfrac{\sqrt{3}}{2} we get,
limx  π62(sinxcosπ6+cosxsinπ6)(x+π6)=k\Rightarrow \displaystyle \lim_{x \to \text{ }-\text{ }\dfrac{\pi }{6}}\dfrac{2\left( \sin x\cos \dfrac{\pi }{6}+\cos x\sin \dfrac{\pi }{6} \right)}{\left( x+\dfrac{\pi }{6} \right)}=k
Also we know that, sin(A+B)=sinAcosB+cosAsinB\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B
limx  π62sin(x+π6)(x+π6)=k\Rightarrow \displaystyle \lim_{x \to \text{ }-\text{ }\dfrac{\pi }{6}}\dfrac{2\sin \left( x+\dfrac{\pi }{6} \right)}{\left( x+\dfrac{\pi }{6} \right)}=k
Now, put (x+π6)=t\left( x+\dfrac{\pi }{6} \right)=t then as xπ6x \to -\dfrac{\pi }{6} we get t0t\to 0.
Hence, by using the above substitution we can write
limt 02sintt=k\Rightarrow \displaystyle \lim_{t\to \text{ 0}}\dfrac{2\sin t}{t}=k
As 2 is a constant we get,
2limt 0sintt=k\Rightarrow 2\displaystyle \lim_{t\to \text{ 0}}\dfrac{\sin t}{t}=k
By using the rule of continuity that is limx0sinxx=1\displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1 we get,
2=k\Rightarrow 2=k
Hence, for the given f(x)f\left( x \right) the value of k is 2.

Note: In this type of question interpretation of the question is important. Students have to take care in calculation of the limit and using the appropriate formulae of limit and continuity as well as of trigonometry. Also students have to recall the values of trigonometric sine and cosine function for the angles like π6\dfrac{\pi }{6}, π3\dfrac{\pi }{3}, π4\dfrac{\pi }{4},……etc.