Solveeit Logo

Question

Question: Find k if the following matrices are singular (i) \(\left[ \begin{matrix} 7 & 3 \\\ -2 &...

Find k if the following matrices are singular
(i) [73 2k ]\left[ \begin{matrix} 7 & 3 \\\ -2 & k \\\ \end{matrix} \right] (ii) [431 7k1 1091 ]\left[ \begin{matrix} 4 & 3 & 1 \\\ 7 & k & 1 \\\ 10 & 9 & 1 \\\ \end{matrix} \right] (iii) [k123 312 124 ]\left[ \begin{matrix} k-1 & 2 & 3 \\\ 3 & 1 & 2 \\\ 1 & -2 & 4 \\\ \end{matrix} \right]

Explanation

Solution

We first discuss the condition of a matrix being singular. We understand that to be a singular determinant value of a matrix has to be 0. All the given matrices are singular. We find their determinant value and equate it with 0 to find the value of k.

Complete step by step answer:
First, we discuss the condition of a matrix being singular.
If the determinant value of a matrix is 0 then the matrix is singular. For example: if A be a matrix and det(A)=A=0\det \left( A \right)=\left| A \right|=0 then we can claim that A is a singular matrix. All the other matrices are non-singular matrices.
Now we find the determinant value of the given matrices. It’s given they are all singular.
For X=[73 2k ]X=\left[ \begin{matrix} 7 & 3 \\\ -2 & k \\\ \end{matrix} \right], the det(X)=X\det \left( X \right)=\left| X \right| value is 0.
X=7×k(2)×3=7k+6\left| X \right|=7\times k-\left( -2 \right)\times 3=7k+6.
So, 7k+6=0k=677k+6=0\Rightarrow k=\dfrac{-6}{7}.
Therefore, the value of k for [73 2k ]\left[ \begin{matrix} 7 & 3 \\\ -2 & k \\\ \end{matrix} \right] is 67\dfrac{-6}{7}.
For Y=[431 7k1 1091 ]Y=\left[ \begin{matrix} 4 & 3 & 1 \\\ 7 & k & 1 \\\ 10 & 9 & 1 \\\ \end{matrix} \right], the det(Y)=Y\det \left( Y \right)=\left| Y \right| value is 0. Expanding through third column we get
Y=1×7k 109 1×43 109 +1×43 7k  Y=(6310k)(3630)+(4k21)=366k \begin{aligned} & \Rightarrow \left| Y \right|=1\times \left| \begin{matrix} 7 & k \\\ 10 & 9 \\\ \end{matrix} \right|-1\times \left| \begin{matrix} 4 & 3 \\\ 10 & 9 \\\ \end{matrix} \right|+1\times \left| \begin{matrix} 4 & 3 \\\ 7 & k \\\ \end{matrix} \right| \\\ & \Rightarrow \left| Y \right|=\left( 63-10k \right)-\left( 36-30 \right)+\left( 4k-21 \right)=36-6k \\\ \end{aligned}.
So, 366k=0k=366=636-6k=0\Rightarrow k=\dfrac{36}{6}=6.
Therefore, the value of k for [431 7k1 1091 ]\left[ \begin{matrix} 4 & 3 & 1 \\\ 7 & k & 1 \\\ 10 & 9 & 1 \\\ \end{matrix} \right] is 6.
For Z=[k123 312 124 ]Z=\left[ \begin{matrix} k-1 & 2 & 3 \\\ 3 & 1 & 2 \\\ 1 & -2 & 4 \\\ \end{matrix} \right], the det(Z)=Z\det \left( Z \right)=\left| Z \right| value is 0. Expanding through third column we get
Z=3×31 12 2×k12 12 +4×k12 31  Z=3(61)2(22k2)+4(k16)=8k49 \begin{aligned} & \Rightarrow \left| Z \right|=3\times \left| \begin{matrix} 3 & 1 \\\ 1 & -2 \\\ \end{matrix} \right|-2\times \left| \begin{matrix} k-1 & 2 \\\ 1 & -2 \\\ \end{matrix} \right|+4\times \left| \begin{matrix} k-1 & 2 \\\ 3 & 1 \\\ \end{matrix} \right| \\\ & \Rightarrow \left| Z \right|=3\left( -6-1 \right)-2\left( 2-2k-2 \right)+4\left( k-1-6 \right)=8k-49 \\\ \end{aligned}.
So, 8k49=0k=4988k-49=0\Rightarrow k=\dfrac{49}{8}.
Therefore, the value of k for [k123 312 124 ]\left[ \begin{matrix} k-1 & 2 & 3 \\\ 3 & 1 & 2 \\\ 1 & -2 & 4 \\\ \end{matrix} \right] is 498\dfrac{49}{8}.

Note: Even though we are dealing with a singular and non-singular matrix the notion is related to its determinant value. Also, we can’t get confused with the concept of zero matrix and determinant value of a matrix being 0. First one is a matrix and the second one is a value.