Solveeit Logo

Question

Question: find K, If the equation 2x+3y-2=0 2x+4y-k=0 and x-2y+3k=0 are consistent...

find K, If the equation 2x+3y-2=0 2x+4y-k=0 and x-2y+3k=0 are consistent

Answer

16

Explanation

Solution

We have three lines:

L1: 2x+3y2=02x+3y=2(1)L2: 2x+4yk=02x+4y=k(2)L3: x2y+3k=0x2y=3k(3)\begin{aligned} L_1:~& 2x+3y-2=0 \quad\Rightarrow\quad 2x+3y = 2 \quad(1) \\ L_2:~& 2x+4y-k=0 \quad\Rightarrow\quad 2x+4y = k \quad(2) \\ L_3:~& x-2y+3k=0 \quad\Rightarrow\quad x-2y = -3k \quad(3) \end{aligned}

For consistency, the three lines must have a common point.

  1. Solve (1) and (2):

Subtract (1) from (2):

(2x+4y)(2x+3y)=k2y=k2.(2x+4y) - (2x+3y) = k - 2 \quad\Rightarrow\quad y = k - 2.

Substitute y=k2y = k-2 in (1):

2x+3(k2)=22x=23k+6=83k,2x + 3(k-2) = 2 \quad\Rightarrow\quad 2x = 2 - 3k +6 = 8 - 3k,

thus,

x=83k2.x = \frac{8-3k}{2}.
  1. Substitute into (3):
83k22(k2)+3k=0.\frac{8-3k}{2} - 2(k-2) + 3k = 0.

Multiply through by 2:

83k4(k2)+6k=0.8-3k - 4(k-2) + 6k = 0.

Expand and simplify:

83k4k+8+6k=016k=0.8-3k - 4k +8 +6k = 0 \quad\Rightarrow\quad 16 - k = 0.

Hence,

k=16.k = 16.