Question
Question: Find inverse of matrix whose rows are 3,0,3 and 4,2,5 and 1,1,1...
Find inverse of matrix whose rows are 3,0,3 and 4,2,5 and 1,1,1
1−31−32−10121−2
Solution
To find the inverse of the given matrix A, we will use the formula A−1=det(A)1adj(A).
Given matrix: A=341021351
1. Calculate the determinant of A (det(A)): det(A)=3(2×1−5×1)−0(4×1−5×1)+3(4×1−2×1) det(A)=3(2−5)−0+3(4−2) det(A)=3(−3)+3(2) det(A)=−9+6 det(A)=−3
Since det(A)=0, the inverse exists.
2. Calculate the cofactor matrix (C): The cofactor Cij is (−1)i+j times the determinant of the submatrix obtained by deleting the i-th row and j-th column.
C11=+(2×1−5×1)=2−5=−3 C12=−(4×1−5×1)=−(4−5)=1 C13=+(4×1−2×1)=4−2=2
C21=−(0×1−3×1)=−(0−3)=3 C22=+(3×1−3×1)=3−3=0 C23=−(3×1−0×1)=−(3−0)=−3
C31=+(0×5−3×2)=0−6=−6 C32=−(3×5−3×4)=−(15−12)=−3 C33=+(3×2−0×4)=6−0=6
The cofactor matrix C is: C=−33−610−32−36
3. Calculate the adjoint of A (adj(A)): The adjoint of A is the transpose of the cofactor matrix. adj(A)=CT=−31230−3−6−36
4. Calculate the inverse of A (A−1): A−1=det(A)1adj(A) A−1=−31−31230−3−6−36 A−1=−3−3−31−32−33−30−3−3−3−6−3−3−36 A−1=1−31−32−10121−2