Solveeit Logo

Question

Question: Find integration of :- \[\int {\cos x\log \left( {\tan \dfrac{x}{2}} \right)} dx = \] (a) \[\sin x...

Find integration of :- cosxlog(tanx2)dx=\int {\cos x\log \left( {\tan \dfrac{x}{2}} \right)} dx =
(a) sinxlogtanxx+C\sin x\log \left| {\tan x} \right| - x + C
(b) sinxlogtanx2+x+C - \sin x\log \left| {\tan \dfrac{x}{2}} \right| + x + C
(c) sinxlogtanx2x+C - \sin x\log \left| {\tan \dfrac{x}{2}} \right| - x + C
(d) sinxlogtanx2x+C\sin x\log \left| {\tan \dfrac{x}{2}} \right| - x + C

Explanation

Solution

Here, we need to find the value of the given integral. We will use integration by parts and trigonometric identities to simplify the given equation and find the integral of the given function. Integration is a method by which we can find summation of discrete data.

Formula Used: We will use the following formula:
1.Using integration by parts, the integral of the product of two differentiable functions of xx can be written as uvdx=uvdx(d(u)dx×vdx)dx\int {uv} dx = u\int v dx - \int {\left( {\dfrac{{d\left( u \right)}}{{dx}} \times \int v dx} \right)dx} , where uu and vv are the differentiable functions of xx.
2.The tangent of an angle θ\theta can be written as tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}.
3.The secant of an angle θ\theta can be written as secθ=1cosθ\sec \theta = \dfrac{1}{{\cos \theta }}.

Complete step-by-step answer:
We will integrate the simplified function using integration by parts.
Rewriting the equation, we get
cosxlog(tanx2)dx=cosx×log(tanx2)dx\Rightarrow \int {\cos x\log \left( {\tan \dfrac{x}{2}} \right)} dx = \int {\cos x \times \log \left( {\tan \dfrac{x}{2}} \right)} dx
Let uu be log(tanx2)\log \left( {\tan \dfrac{x}{2}} \right) and vv be cosx\cos x.
Therefore, by integrating cosx×log(tanx2)dx\int {\cos x \times \log \left( {\tan \dfrac{x}{2}} \right)} dx by parts, we get
\Rightarrow \int {\cos x \times \log \left( {\tan \dfrac{x}{2}} \right)} dx = \log \left( {\tan \dfrac{x}{2}} \right)\int {\left( {\cos x} \right)} dx - \int {\left[ {\dfrac{{d\left\\{ {\log \left( {\tan \dfrac{x}{2}} \right)} \right\\}}}{{dx}} \times \int {\left( {\cos x} \right)} dx} \right]} dx
The derivative of a function of the form \log \left\\{ {f\left( x \right)} \right\\} is \dfrac{1}{{f\left( x \right)}} \times \dfrac{{d\left\\{ {f\left( x \right)} \right\\}}}{{dx}}.
Thus, we get
cosx×log(tanx2)dx=log(tanx2)(cosx)dx[1tanx2×d(tanx2)dx×(cosx)dx]dx\Rightarrow \int {\cos x \times \log \left( {\tan \dfrac{x}{2}} \right)} dx = \log \left( {\tan \dfrac{x}{2}} \right)\int {\left( {\cos x} \right)} dx - \int {\left[ {\dfrac{1}{{\tan \dfrac{x}{2}}} \times \dfrac{{d\left( {\tan \dfrac{x}{2}} \right)}}{{dx}} \times \int {\left( {\cos x} \right)} dx} \right]} dx
Simplifying the derivative, we get
cosx×log(tanx2)dx=log(tanx2)(cosx)dx[1tanx2×sec2x2×d(x2)dx×(cosx)dx]dx\Rightarrow \int {\cos x \times \log \left( {\tan \dfrac{x}{2}} \right)} dx = \log \left( {\tan \dfrac{x}{2}} \right)\int {\left( {\cos x} \right)} dx - \int {\left[ {\dfrac{1}{{\tan \dfrac{x}{2}}} \times {{\sec }^2}\dfrac{x}{2} \times \dfrac{{d\left( {\dfrac{x}{2}} \right)}}{{dx}} \times \int {\left( {\cos x} \right)} dx} \right]} dx
Therefore, we get
cosx×log(tanx2)dx=log(tanx2)(cosx)dx[1tanx2×sec2x2×12×(cosx)dx]dx\Rightarrow \int {\cos x \times \log \left( {\tan \dfrac{x}{2}} \right)} dx = \log \left( {\tan \dfrac{x}{2}} \right)\int {\left( {\cos x} \right)} dx - \int {\left[ {\dfrac{1}{{\tan \dfrac{x}{2}}} \times {{\sec }^2}\dfrac{x}{2} \times \dfrac{1}{2} \times \int {\left( {\cos x} \right)} dx} \right]} dx
The tangent of an angle θ\theta can be written as tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}.
The secant of an angle θ\theta can be written as secθ=1cosθ\sec \theta = \dfrac{1}{{\cos \theta }}.
Rewriting the terms in the parentheses in terms of sine and cosine, we get
cosx×log(tanx2)dx=log(tanx2)(cosx)dx[1sinx2cosx2×1cos2x2×12×(cosx)dx]dx\Rightarrow \int {\cos x \times \log \left( {\tan \dfrac{x}{2}} \right)} dx = \log \left( {\tan \dfrac{x}{2}} \right)\int {\left( {\cos x} \right)} dx - \int {\left[ {\dfrac{1}{{\dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}}} \times \dfrac{1}{{{{\cos }^2}\dfrac{x}{2}}} \times \dfrac{1}{2} \times \int {\left( {\cos x} \right)} dx} \right]} dx
Simplifying the expression, we get
cosx×log(tanx2)dx=log(tanx2)(cosx)dx[cosx2sinx2×1cos2x2×12×(cosx)dx]dx cosx×log(tanx2)dx=log(tanx2)(cosx)dx[12×1sinx2×1cosx2×(cosx)dx]dx\begin{array}{l} \Rightarrow \int {\cos x \times \log \left( {\tan \dfrac{x}{2}} \right)} dx = \log \left( {\tan \dfrac{x}{2}} \right)\int {\left( {\cos x} \right)} dx - \int {\left[ {\dfrac{{\cos \dfrac{x}{2}}}{{\sin \dfrac{x}{2}}} \times \dfrac{1}{{{{\cos }^2}\dfrac{x}{2}}} \times \dfrac{1}{2} \times \int {\left( {\cos x} \right)} dx} \right]} dx\\\ \Rightarrow \int {\cos x \times \log \left( {\tan \dfrac{x}{2}} \right)} dx = \log \left( {\tan \dfrac{x}{2}} \right)\int {\left( {\cos x} \right)} dx - \int {\left[ {\dfrac{1}{2} \times \dfrac{1}{{\sin \dfrac{x}{2}}} \times \dfrac{1}{{\cos \dfrac{x}{2}}} \times \int {\left( {\cos x} \right)} dx} \right]} dx\end{array}
Therefore, we get
cosx×log(tanx2)dx=log(tanx2)(cosx)dx[12sinx2cosx2×(cosx)dx]dx\Rightarrow \int {\cos x \times \log \left( {\tan \dfrac{x}{2}} \right)} dx = \log \left( {\tan \dfrac{x}{2}} \right)\int {\left( {\cos x} \right)} dx - \int {\left[ {\dfrac{1}{{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}} \times \int {\left( {\cos x} \right)} dx} \right]} dx
Applying the trigonometric identity 2sinAcosA=sin2A2\sin A\cos A = \sin 2A, we get
cosx×log(tanx2)dx=log(tanx2)(cosx)dx[1sinx×(cosx)dx]dx\Rightarrow \int {\cos x \times \log \left( {\tan \dfrac{x}{2}} \right)} dx = \log \left( {\tan \dfrac{x}{2}} \right)\int {\left( {\cos x} \right)} dx - \int {\left[ {\dfrac{1}{{\sin x}} \times \int {\left( {\cos x} \right)} dx} \right]} dx
Now, the integral of cosx\cos x is sinx\sin x.
Substituting cosxdx=sinx\int {\cos x} dx = \sin x in the equation, we get
cosx×log(tanx2)dx=log(tanx2)sinx[1sinx×sinx]dx\Rightarrow \int {\cos x \times \log \left( {\tan \dfrac{x}{2}} \right)} dx = \log \left( {\tan \dfrac{x}{2}} \right)\sin x - \int {\left[ {\dfrac{1}{{\sin x}} \times \sin x} \right]} dx
Simplifying the expression, we get
cosx×log(tanx2)dx=sinxlog(tanx2)(1)dx\Rightarrow \int {\cos x \times \log \left( {\tan \dfrac{x}{2}} \right)} dx = \sin x\log \left( {\tan \dfrac{x}{2}} \right) - \int {\left( 1 \right)} dx
The integral of a constant with respect to a variable is the product of the constant and the variable.
Therefore, we get
cosxlog(tanx2)dx=sinxlog(tanx2)x+C\Rightarrow \int {\cos x\log \left( {\tan \dfrac{x}{2}} \right)} dx = \sin x\log \left( {\tan \dfrac{x}{2}} \right) - x + C, where CC is the constant of integration
Therefore, we get the value of the integral cosxlog(tanx2)dx\int {\cos x\log \left( {\tan \dfrac{x}{2}} \right)} dx as sinxlog(tanx2)x+C\sin x\log \left( {\tan \dfrac{x}{2}} \right) - x + C, where CC is the constant of integration.
Thus, the correct option is option (d).

Note: We simplified d(tanx2)dx\dfrac{{d\left( {\tan \dfrac{x}{2}} \right)}}{{dx}} as sec2x2×d(x2)dx{\sec ^2}\dfrac{x}{2} \times \dfrac{{d\left( {\dfrac{x}{2}} \right)}}{{dx}}. This is because the derivative of a function of the form \tan \left\\{ {f\left( x \right)} \right\\} is {\sec ^2}\left\\{ {f\left( x \right)} \right\\} \times \dfrac{{d\left\\{ {f\left( x \right)} \right\\}}}{{dx}}.
We simplified d(x2)dx\dfrac{{d\left( {\dfrac{x}{2}} \right)}}{{dx}} as 12\dfrac{1}{2}. This is because the derivative of a function of the form af(x)af\left( x \right) is a\dfrac{{d\left\\{ {f\left( x \right)} \right\\}}}{{dx}}, and the derivative of a variable with respect to itself is 1.
We used the trigonometric identity 2sinAcosA=sin2A2\sin A\cos A = \sin 2A. This is the trigonometric identity for the sine of the double of an angle.