Solveeit Logo

Question

Question: find integral roots of eq $x^2+ax+a+1=0$ and also find integral values of a....

find integral roots of eq x2+ax+a+1=0x^2+ax+a+1=0 and also find integral values of a.

Answer

Integral roots are 0,1,2,30, 1, -2, -3. Integral values of aa are 1,5-1, 5.

Explanation

Solution

Let the integral roots be x1x_1 and x2x_2. From Vieta's formulas: x1+x2=ax_1 + x_2 = -a x1x2=a+1x_1 x_2 = a + 1

Substituting a=(x1+x2)a = -(x_1 + x_2) into the second equation: x1x2=(x1+x2)+1x_1 x_2 = -(x_1 + x_2) + 1 x1x2+x1+x2=1x_1 x_2 + x_1 + x_2 = 1 Adding 1 to both sides: (x1+1)(x2+1)=2(x_1 + 1)(x_2 + 1) = 2

The integer factor pairs of 2 are (1,2)(1, 2) and (1,2)(-1, -2).

Case 1: x1+1=1,x2+1=2    x1=0,x2=1x_1 + 1 = 1, x_2 + 1 = 2 \implies x_1 = 0, x_2 = 1. a=(0+1)=1a = -(0 + 1) = -1.

Case 2: x1+1=1,x2+1=2    x1=2,x2=3x_1 + 1 = -1, x_2 + 1 = -2 \implies x_1 = -2, x_2 = -3. a=(2+3)=5a = -(-2 + -3) = 5.

The integral roots are 0,1,2,30, 1, -2, -3. The integral values of aa are 1,5-1, 5.