Question
Question: find integral roots of eq $x^2+ax+a+1=0$ and also find integral values of a....
find integral roots of eq x2+ax+a+1=0 and also find integral values of a.

Answer
Integral roots are 0,1,−2,−3. Integral values of a are −1,5.
Explanation
Solution
Let the integral roots be x1 and x2. From Vieta's formulas: x1+x2=−a x1x2=a+1
Substituting a=−(x1+x2) into the second equation: x1x2=−(x1+x2)+1 x1x2+x1+x2=1 Adding 1 to both sides: (x1+1)(x2+1)=2
The integer factor pairs of 2 are (1,2) and (−1,−2).
Case 1: x1+1=1,x2+1=2⟹x1=0,x2=1. a=−(0+1)=−1.
Case 2: x1+1=−1,x2+1=−2⟹x1=−2,x2=−3. a=−(−2+−3)=5.
The integral roots are 0,1,−2,−3. The integral values of a are −1,5.
