Solveeit Logo

Question

Question: Find : $\int \frac{x^2-x+1}{(x-1)(x^2+1)} dx$...

Find : x2x+1(x1)(x2+1)dx\int \frac{x^2-x+1}{(x-1)(x^2+1)} dx

Answer

12lnx1+14ln(x2+1)12arctan(x)+C\frac{1}{2} \ln|x-1| + \frac{1}{4} \ln(x^2+1) - \frac{1}{2} \arctan(x) + C

Explanation

Solution

We use partial fraction decomposition: x2x+1(x1)(x2+1)=Ax1+Bx+Cx2+1\frac{x^2-x+1}{(x-1)(x^2+1)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+1} Solving for constants gives A=12A=\frac{1}{2}, B=12B=\frac{1}{2}, C=12C=-\frac{1}{2}. The integral becomes: (12(x1)+x12(x2+1))dx\int \left(\frac{1}{2(x-1)} + \frac{x-1}{2(x^2+1)}\right) dx Integrating term-wise: 12dxx1+12xx2+1dx121x2+1dx\frac{1}{2}\int\frac{dx}{x-1} + \frac{1}{2}\int\frac{x}{x^2+1}dx - \frac{1}{2}\int\frac{1}{x^2+1}dx =12lnx1+14ln(x2+1)12arctan(x)+C= \frac{1}{2}\ln|x-1| + \frac{1}{4}\ln(x^2+1) - \frac{1}{2}\arctan(x) + C