Solveeit Logo

Question

Question: Find \(\int{\dfrac{\sin x}{\sin \left( x-a \right)}dx}\)....

Find sinxsin(xa)dx\int{\dfrac{\sin x}{\sin \left( x-a \right)}dx}.

Explanation

Solution

We first break the numerator of the fraction sinxsin(xa)\dfrac{\sin x}{\sin \left( x-a \right)} as \sin x=\sin \left\\{ \left( x-a \right)+a \right\\}. We apply the identity formula of sin(m+n)=sinmcosn+cosmsinn\sin \left( m+n \right)=\sin m\cos n+\cos m\sin n. We use the integral formula of cotxdx=logsinx\int{\cot xdx}=\log \left| \sin x \right|. We break the integration and find the solution.

Complete step by step solution:
To simplify the term sinxsin(xa)\dfrac{\sin x}{\sin \left( x-a \right)}, we first form the numerator as \sin x=\sin \left\\{ \left( x-a \right)+a \right\\}.
So, \dfrac{\sin x}{\sin \left( x-a \right)}=\dfrac{\sin \left\\{ \left( x-a \right)+a \right\\}}{\sin \left( x-a \right)}.
Now we use the trigonometric associative form of sin(m+n)=sinmcosn+cosmsinn\sin \left( m+n \right)=\sin m\cos n+\cos m\sin n.
Taking the variables as m=(xa),n=am=\left( x-a \right),n=a, we get sinx=sin(xa)cosa+cos(xa)sina\sin x=\sin \left( x-a \right)\cos a+\cos \left( x-a \right)\sin a.
The simplified form will be sinxsin(xa)=sin(xa)cosa+cos(xa)sinasin(xa)=cosa+cot(xa)sina\dfrac{\sin x}{\sin \left( x-a \right)}=\dfrac{\sin \left( x-a \right)\cos a+\cos \left( x-a \right)\sin a}{\sin \left( x-a \right)}=\cos a+\cot \left( x-a \right)\sin a
In the given terms, aa is constant and xx is variable. Therefore, both cosa,sina\cos a,\sin a are constant.
So, sinxsin(xa)dx=[cosa+cot(xa)sina]dx\int{\dfrac{\sin x}{\sin \left( x-a \right)}dx}=\int{\left[ \cos a+\cot \left( x-a \right)\sin a \right]dx}.
We break the addition and get [cosa+cot(xa)sina]dx=cosadx+sinacot(xa)dx\int{\left[ \cos a+\cot \left( x-a \right)\sin a \right]dx}=\cos a\int{dx}+\sin a\int{\cot \left( x-a \right)dx}.
We take the differential form as d(xa)=dxd\left( x-a \right)=dx.
We also know that cotxdx=logsinx\int{\cot xdx}=\log \left| \sin x \right|.
Therefore, cosadx+sinacot(xa)dx=cosadx+sinacot(xa)d(xa)\cos a\int{dx}+\sin a\int{\cot \left( x-a \right)dx}=\cos a\int{dx}+\sin a\int{\cot \left( x-a \right)d\left( x-a \right)}.
sinxsin(xa)dx =cosadx+sinacot(xa)d(xa) =xcosa+sinalogsin(xa)+c \begin{aligned} & \int{\dfrac{\sin x}{\sin \left( x-a \right)}dx} \\\ & =\cos a\int{dx}+\sin a\int{\cot \left( x-a \right)d\left( x-a \right)} \\\ & =x\cos a+\sin a\log \left| \sin \left( x-a \right) \right|+c \\\ \end{aligned}
Here cc is the integral constant.

Note:
We broke the numerator instead of the denominator as that helps in breaking the fraction into two parts, one of which is constant. We need to change the differential form as the main formula of cotxdx=logsinx\int{\cot xdx}=\log \left| \sin x \right| is for variable xx.