Question
Question: Find \[\int {\dfrac{{dx}}{{{x^2} - {a^2}}}} \] and hence evaluate \(\int {\dfrac{{dx}}{{{x^2} - 25}}...
Find ∫x2−a2dx and hence evaluate ∫x2−25dx.
Solution
Integral is either a numerical value equal to the area under the graph of a function, for some interval or a new function the derivative of which is the original function.
Complete step by step solution:
Let I =∫x2−a21dx
We use the formula,a2−b2=(a−b)(a+b)
I=∫(x−a)(x+a)1dx
Now, we will multiply numerator and denominator by2a, We have
I=∫2a(x−a)(x+a)2adx
I=2a1∫(x−a)(x+a)2adx
I=2a1∫(x−a)(x+a)a+adx
I=2a1∫(x−a)(x+a)x−x+a+adx
I=2a1∫(x−a)(x+a)x+a−x+adx
I=2a1∫(x−a)(x+a)(x+a)−(x−a)dx
I = \dfrac{1}{{2a}}\int {\left\\{ {\dfrac{{x + a}}{{\left( {x + a} \right)\left( {x - a} \right)}} - \dfrac{{x - a}}{{\left( {x + a} \right)\left( {x - a} \right)}}} \right\\}dx}
I = \dfrac{1}{{2a}}\int {\left\\{ {\dfrac{1}{{x - a}} - \dfrac{1}{{x + a}}} \right\\}dx}
I=2a1[∫x−a1dx−∫x+a1dx]
Using the integral formula ∫f(x)f′(x)dx=log(x)+C, we will get
I=2a1[log(x−a)−log(x+a)]+C
As we know that log a−logb=logba, we have
I=2a1[log(x+ax−a)]+C
Now, we evaluate∫x2−25dx
We convert x2−25dxin the form of ∫x2−a2dx
So, ∫x2−(5)2dx
We will use the result of ∫x2−a2dx=2a1[log(x+ax−a)]+Cfor solving ∫x2(5)2dx
Therefore, a=5.
Then, ∫x2−25dx=2×51[log(x+5x−5)]+C
∫x2−25dx=101[log(x+5x−5)]+C
Note: In this type of question, students must know that the both integral values have the same sign. Then we will use the previous result for finding the next integral.