Solveeit Logo

Question

Question: Find \[\int {\dfrac{{dx}}{{{x^2} - {a^2}}}} \] and hence evaluate \(\int {\dfrac{{dx}}{{{x^2} - 25}}...

Find dxx2a2\int {\dfrac{{dx}}{{{x^2} - {a^2}}}} and hence evaluate dxx225\int {\dfrac{{dx}}{{{x^2} - 25}}} .

Explanation

Solution

Integral is either a numerical value equal to the area under the graph of a function, for some interval or a new function the derivative of which is the original function.

Complete step by step solution:
Let I =1x2a2dx= \int {\dfrac{1}{{{x^2} - {a^2}}}dx}
We use the formula,a2b2=(ab)(a+b){a^2} - {b^2} = (a - b)(a + b)
I=1(xa)(x+a)dxI = \int {\dfrac{1}{{(x - a)(x + a)}}} dx
Now, we will multiply numerator and denominator by2a2a, We have
I=2a2a(xa)(x+a)dxI = \int {\dfrac{{2a}}{{2a(x - a)(x + a)}}dx}
I=12a2a(xa)(x+a)dxI = \dfrac{1}{{2a}}\int {\dfrac{{2a}}{{(x - a)(x + a)}}} dx
I=12aa+a(xa)(x+a)dxI = \dfrac{1}{{2a}}\int {\dfrac{{a + a}}{{(x - a)(x + a)}}} dx
I=12axx+a+a(xa)(x+a)dxI = \dfrac{1}{{2a}}\int {\dfrac{{x - x + a + a}}{{(x - a)(x + a)}}} dx
I=12ax+ax+a(xa)(x+a)dxI = \dfrac{1}{{2a}}\int {\dfrac{{x + a - x + a}}{{(x - a)(x + a)}}dx}
I=12a(x+a)(xa)(xa)(x+a)dxI = \dfrac{1}{{2a}}\int {\dfrac{{(x + a) - (x - a)}}{{(x - a)(x + a)}}} dx
I = \dfrac{1}{{2a}}\int {\left\\{ {\dfrac{{x + a}}{{\left( {x + a} \right)\left( {x - a} \right)}} - \dfrac{{x - a}}{{\left( {x + a} \right)\left( {x - a} \right)}}} \right\\}dx}
I = \dfrac{1}{{2a}}\int {\left\\{ {\dfrac{1}{{x - a}} - \dfrac{1}{{x + a}}} \right\\}dx}
I=12a[1xadx1x+adx]I = \dfrac{1}{{2a}}\left[ {\int {\dfrac{1}{{x - a}}dx} - \int {\dfrac{1}{{x + a}}dx} } \right]
Using the integral formula f(x)f(x)dx=log(x)+C\int {\dfrac{{f'(x)}}{{f(x)}}dx = \log (x) + C} , we will get
I=12a[log(xa)log(x+a)]+CI = \dfrac{1}{{2a}}[\log \,(x - a) - \log (x + a)] + C
As we know that log alogb=logaba - \log b = \log \dfrac{a}{b}, we have
I=12a[log(xax+a)]+CI = \dfrac{1}{{2a}}\left[ {\log \left( {\dfrac{{x - a}}{{x + a}}} \right)} \right] + C
Now, we evaluatedxx225\int {\dfrac{{dx}}{{{x^2} - 25}}}
We convert dxx225\dfrac{{dx}}{{{x^2} - 25}}in the form of dxx2a2\int {\dfrac{{dx}}{{{x^2} - {a^2}}}}
So, dxx2(5)2\int {\dfrac{{dx}}{{{x^2} - {{(5)}^2}}}}
We will use the result of dxx2a2=12a[log(xax+a)]+C\int {\dfrac{{dx}}{{{x^2} - {a^2}}}} = \dfrac{1}{{2a}}\left[ {\log \left( {\dfrac{{x - a}}{{x + a}}} \right)} \right] + Cfor solving dxx2(5)2\int {\dfrac{{dx}}{{{x^2}{{(5)}^2}}}}
Therefore, a=5a = 5.
Then, dxx225=12×5[log(x5x+5)]+C\int {\dfrac{{dx}}{{{x^2} - 25}}} = \dfrac{1}{{2 \times 5}}\left[ {\log \left( {\dfrac{{x - 5}}{{x + 5}}} \right)} \right] + C
dxx225=110[log(x5x+5)]+C\int {\dfrac{{dx}}{{{x^2} - 25}} = \dfrac{1}{{10}}\left[ {\log \left( {\dfrac{{x - 5}}{{x + 5}}} \right)} \right] + C}

Note: In this type of question, students must know that the both integral values have the same sign. Then we will use the previous result for finding the next integral.