Solveeit Logo

Question

Question: Find imaginary part of \(\sin^{- 1}(\text{cosec}\theta)\)...

Find imaginary part of sin1(cosecθ)\sin^{- 1}(\text{cosec}\theta)

A

log(cotθ2)\log\left( \cot\frac{\theta}{2} \right)

B

π2\frac{\pi}{2}

C

12log(cotθ2)\frac{1}{2}\log\left( \cot\frac{\theta}{2} \right)

D

None

Answer

log(cotθ2)\log\left( \cot\frac{\theta}{2} \right)

Explanation

Solution

Let sin1(cosecθ)=x+iy\sin^{- 1}(\text{cosec}\theta) = x + iy

\therefore cosecθ=sin(x+iy)\text{cosec}\theta = \sin(x + iy) = sinxcoshy+icosxsinhy\sin x{\cos h}y + i\cos x{\sin h}y

By comparing we get, sinxcoshy=cosecθ\sin x\cosh y = \text{cosec}\theta ......(i) and cosxsinhy=0\cos x{\sin h}y = 0 .........(ii)

From (ii), cosx=0\cos x = 0x=π2x = \frac{\pi}{2}

\therefore from (i) sinπ2.coshy=cosecθ\sin\frac{\pi}{2}.\cosh y = \text{cosec}\theta or y=cosh1(cosecθ)y = \cosh^{- 1}(\text{cosec}\theta) =log[cosecθ]\log\lbrack\text{cosec}\theta\rbrack

y\Rightarrow y = log[cosecθ+cotθ]\log\lbrack\text{cosec}\theta + \cot\theta\rbrack = log(cotθ2)\log\left( \cot\frac{\theta}{2} \right)

sin1(cosecθ)\therefore\sin^{- 1}(\text{cosec}\theta) =π2+ilog(cotθ2)\frac{\pi}{2} + i\log\left( \cot\frac{\theta}{2} \right)

Real part = π2,\frac{\pi}{2}, Imaginary part = log(cotθ2)\log\left( \cot\frac{\theta}{2} \right)