Question
Question: Find imaginary part of \(\sin^{- 1}(\text{cosec}\theta)\)...
Find imaginary part of sin−1(cosecθ)
A
log(cot2θ)
B
2π
C
21log(cot2θ)
D
None
Answer
log(cot2θ)
Explanation
Solution
Let sin−1(cosecθ)=x+iy
∴ cosecθ=sin(x+iy) = sinxcoshy+icosxsinhy
By comparing we get, sinxcoshy=cosecθ ......(i) and cosxsinhy=0 .........(ii)
From (ii), cosx=0 ⇒ x=2π
∴ from (i) sin2π.coshy=cosecθ or y=cosh−1(cosecθ) =log[cosecθ]
⇒y = log[cosecθ+cotθ] = log(cot2θ)
∴sin−1(cosecθ) =2π+ilog(cot2θ)
Real part = 2π, Imaginary part = log(cot2θ)