Solveeit Logo

Question

Mathematics Question on Differential equations

Find general solution: (x+3y2)dydx=y, (y>0)(x+3y^2) \frac {dy}{dx} = y,\ (y>0)

Answer

(x+3y2)dydx\frac {dy}{dx} = y

dydx\frac {dy}{dx}= yx\frac yx+3y2

dxdy\frac {dx}{dy} = x+3y2y\frac {x+3y^2}{y} = xy\frac xy+3y

dxdy\frac {dx}{dy}-xy\frac xy = 3y

This is a linear differential equation of the form:

dxdy\frac {dx}{dy}+px = Q (where p=-1y\frac 1y and Q=3y)

Now, I.F. = epdye^{∫pdy }= e1ydye^{-∫\frac 1ydy } = elog ye^{-log \ y} = elog(1y)e^{log(\frac 1y)} = 1y\frac 1y

The general solution of the given differential equation is given by the relation,

x(I.F.) = ∫(Q×I.F.)dy+C

⇒x.1y\frac 1y = ∫(3y.1y\frac 1y)dy+C

xy\frac xy = 3y+C

⇒x = 3y2+Cy