Question
Question: Find $\Delta G$ of the reaction in calorie at 300 K for A(g) $\rightleftharpoons$ 2B (g) ; $K_p = 10...
Find ΔG of the reaction in calorie at 300 K for A(g) ⇌ 2B (g) ; Kp=10 at 300 K when partial pressures of A(g) & B(g) are 100 kPa & 1000 kPa respectively Given : ln10=2.3 ; R=2 cal/mol-K
1380 cal/mol
0 cal/mol
600 cal/mol
2300 cal/mol
1380 cal/mol
Solution
The Gibbs Free Energy change (ΔG) is related to the reaction quotient (Q) by the equation: ΔG=RTln(KpQ) For the reaction A(g) ⇌ 2B(g), the reaction quotient (Qp) is expressed in terms of partial pressures relative to a standard pressure (P∘=1 bar = 100 kPa): Qp=(PA/P∘)(PB/P∘)2 Given:
- Temperature, T=300 K
- Equilibrium constant, Kp=10
- Partial pressure of A, PA=100 kPa
- Partial pressure of B, PB=1000 kPa
- Gas constant, R=2 cal/mol-K
- Standard pressure, P∘=100 kPa
Calculate the partial pressures relative to the standard pressure:
- PA/P∘=100 kPa100 kPa=1
- PB/P∘=100 kPa1000 kPa=10
Calculate the reaction quotient (Qp): Qp=1(10)2=100
Now, calculate ΔG: ΔG=RTln(KpQp) ΔG=(2 cal/mol-K)×(300 K)×ln(10100) ΔG=600 cal/mol×ln(10) Using ln10=2.3: ΔG=600 cal/mol×2.3 ΔG=1380 cal/mol