Solveeit Logo

Question

Question: Find $\Delta G$ of the reaction in calorie at 300 K for A(g) $\rightleftharpoons$ 2B (g) ; $K_p = 10...

Find ΔG\Delta G of the reaction in calorie at 300 K for A(g) \rightleftharpoons 2B (g) ; Kp=10K_p = 10 at 300 K when partial pressures of A(g) & B(g) are 100 kPa & 1000 kPa respectively Given : ln10=2.3\ln 10 = 2.3 ; R=2R = 2 cal/mol-K

A

1380 cal/mol

B

0 cal/mol

C

600 cal/mol

D

2300 cal/mol

Answer

1380 cal/mol

Explanation

Solution

The Gibbs Free Energy change (ΔG\Delta G) is related to the reaction quotient (QQ) by the equation: ΔG=RTln(QKp)\Delta G = RT \ln \left(\frac{Q}{K_p}\right) For the reaction A(g) \rightleftharpoons 2B(g), the reaction quotient (QpQ_p) is expressed in terms of partial pressures relative to a standard pressure (P=1P^\circ = 1 bar = 100 kPa): Qp=(PB/P)2(PA/P)Q_p = \frac{(P_B/P^\circ)^2}{(P_A/P^\circ)} Given:

  • Temperature, T=300T = 300 K
  • Equilibrium constant, Kp=10K_p = 10
  • Partial pressure of A, PA=100P_A = 100 kPa
  • Partial pressure of B, PB=1000P_B = 1000 kPa
  • Gas constant, R=2R = 2 cal/mol-K
  • Standard pressure, P=100P^\circ = 100 kPa

Calculate the partial pressures relative to the standard pressure:

  • PA/P=100 kPa100 kPa=1P_A/P^\circ = \frac{100 \text{ kPa}}{100 \text{ kPa}} = 1
  • PB/P=1000 kPa100 kPa=10P_B/P^\circ = \frac{1000 \text{ kPa}}{100 \text{ kPa}} = 10

Calculate the reaction quotient (QpQ_p): Qp=(10)21=100Q_p = \frac{(10)^2}{1} = 100

Now, calculate ΔG\Delta G: ΔG=RTln(QpKp)\Delta G = RT \ln \left(\frac{Q_p}{K_p}\right) ΔG=(2 cal/mol-K)×(300 K)×ln(10010)\Delta G = (2 \text{ cal/mol-K}) \times (300 \text{ K}) \times \ln \left(\frac{100}{10}\right) ΔG=600 cal/mol×ln(10)\Delta G = 600 \text{ cal/mol} \times \ln(10) Using ln10=2.3\ln 10 = 2.3: ΔG=600 cal/mol×2.3\Delta G = 600 \text{ cal/mol} \times 2.3 ΔG=1380 cal/mol\Delta G = 1380 \text{ cal/mol}