Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Find dydx:Find\ \frac {dy}{dx}: y=tan1(3xx313x2),  13<x<13y=tan^{-1}( \frac {3x-x^3}{1-3x^2}),\ \ -\frac {1}{\sqrt 3}<x<\frac {1}{\sqrt 3}

Answer

The given relationship is y = tan-1(3xx313x2)( \frac {3x-x^3}{1-3x^2})

y = tan-1(3xx313x2)( \frac {3x-x^3}{1-3x^2})

⇒tan y = (3xx313x2)( \frac {3x-x^3}{1-3x^2}) …...….. (1)

It is known that, tan y = 3tan y3tan3y313tan2y3\frac {3tan\ \frac y3-tan^3\frac y3}{1-3tan^2\frac y3} …….... (2)

Comparing equations (1) and (2), we obtain

x = tan y3\frac y3

Differentiating this relationship with respect to x, we obtain

ddx\frac {d}{dx}(x) = ddx\frac {d}{dx}(tan y3\frac y3)

⇒1 = sec2y3\frac y3 . ddx\frac {d}{dx}(y3\frac y3)

⇒1 = sec2y3\frac y3 . 13\frac 13 . dydx\frac {dy}{dx}

dydx\frac {dy}{dx} = 3sec2y3\frac {3}{sec^2\frac y3} = 3tan2y3\frac {3}{tan^2\frac y3}

dydx\frac {dy}{dx}= 31+x2\frac {3}{1+x^2}