Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Find dydxy=sin1(1x21+x2),0<x<1\frac{dy}{dx} y=sin^{-1}(\frac{1-x^2}{1+x^2}),0<x<1

Answer

The given relationship is y=sin-1(1-x2/1+x2)y=sin1(1x21+x2)y=sin^{-1}(\frac{1-x^2}{1+x^2})

y=sin1(1x21+x2)y=sin^{-1}(\frac{1-x^2}{1+x^2})
siny=1x21+x2sin y=\frac{1-x^2}{1+x^2}

y=sin1(1x21+x2)y=sin-1(\frac{1-x2}{1+x2})
siny=(1x21+x2)⇒siny=(\frac{1-x2}{1+x2})
(1+x2)siny=1x2⇒(1+x^2)siny=1-x^2
(1+siny)x2=1siny⇒(1+siny)x2^=1-siny
x2=1siny1+siny⇒x^2=\frac{1-siny}{1+siny}
x2=(cosy2siny2)(cosy2+siny2)2⇒x^2=\frac{(cos\frac{y}{2}-sin\frac{y}{2})}{(cos\frac{y}{2}+sin\frac{y}{2})^2}
x=cosy2siny2cosy2+siny2⇒x=\frac{cos\frac{y}{2}-sin\frac{y}{2}}{cos\frac{y}{2}+sin\frac{y}{2}}
x=tan(π4y2)⇒x=tan(\frac{π}{4}-\frac{y}{2})
Differentiating this relationship with respect to x, we obtain
ddx(x)=ddx.[tan(π4y2)]\frac{d}{dx}(x)=\frac{d}{dx}.[tan(\frac{π}{4}-\frac{y}{2})]
dydx=21+x2⇒\frac{dy}{dx}=\frac{-2}{1+x^2}