Question
Mathematics Question on Continuity and differentiability
Find dxdyy=sin−1(1+x21−x2),0<x<1
Answer
The given relationship is y=sin-1(1-x2/1+x2)y=sin−1(1+x21−x2)
y=sin−1(1+x21−x2)
siny=1+x21−x2
y=sin−1(1+x21−x2)
⇒siny=(1+x21−x2)
⇒(1+x2)siny=1−x2
⇒(1+siny)x2=1−siny
⇒x2=1+siny1−siny
⇒x2=(cos2y+sin2y)2(cos2y−sin2y)
⇒x=cos2y+sin2ycos2y−sin2y
⇒x=tan(4π−2y)
Differentiating this relationship with respect to x, we obtain
dxd(x)=dxd.[tan(4π−2y)]
⇒dxdy=1+x2−2