Question
Mathematics Question on Continuity and differentiability
Find dxdy:
y=sin−1(2x1−x2, 2−1<x<21
Answer
The given relationship is y=sin-1(2x1−x2
y = sin-1(2x1−x2)
⇒siny = (2x1−x2
Differentiating this relationship with respect to x, we obtain
cos y dxdy = 2[x\frac {d}{dx}$$(\sqrt {1-x^2}) + (1−x2) dxdx]
⇒\sqrt {1-sin^2y}$$\frac {dy}{dx} = 2[2x. -1−x22x+1−x2]
⇒\sqrt {1-(2x\sqrt {1-x2)^2}}$$\frac {dy}{dx} = 2[√1−x2−x2+1−x2]
⇒1−4x2(1−x2) dxdy= 2[√1−x21−2x2]
⇒(1−2x2)2 dxdy= 2[√1−x21−2x2]
⇒(1-2x2)dxdy = 2[√1−x21−2x2]
⇒dxdy = [√1−x22]