Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Find dydx:Find \ \frac {dy}{dx}:
y=sec1(12x21), 0<x<12y=sec^{-1}(\frac {1}{2x^2-1}),\ 0<x< \frac {1}{\sqrt2}

Answer

The given relationship is y = sec-1(12x21)(\frac {1}{2x^2-1})

y = sec-1(12x21)(\frac {1}{2x^2-1})
sec y = 12x21\frac {1}{2x^2-1}
cos y = 2x2-1
2x2 = 1+cos y
2x2 = 2cos2y2\frac y2
x = cos y2\frac y2
Differentiating this relationship with respect to x, we obtain
ddx\frac {d}{dx}(x) = ddx\frac {d}{dx}(cosy2\frac y2)
1 = -siny2\frac y2 . ddx\frac {d}{dx}(y2\frac y2)
-1siny2\frac {1}{sin\frac y2} = \frac 12$$\frac {dy}{dx}
⇒$$\frac {dy}{dx}x = -2siny2\frac {2}{sin\frac y2}
⇒$$\frac {dy}{dx}x= -21cos2y2\frac {2}{\sqrt {1-cos^2 \frac y2}}
⇒$$\frac {dy}{dx}= 21x2\frac {-2}{\sqrt {1-x^2}}