Question
Mathematics Question on Continuity and differentiability
Find dxdy:
y=sec−1(2x2−11), 0<x<21
Answer
The given relationship is y = sec-1(2x2−11)
y = sec-1(2x2−11)
⇒sec y = 2x2−11
⇒cos y = 2x2-1
⇒2x2 = 1+cos y
⇒2x2 = 2cos22y
⇒x = cos 2y
Differentiating this relationship with respect to x, we obtain
dxd(x) = dxd(cos2y)
⇒1 = -sin2y . dxd(2y)
⇒-sin2y1 = \frac 12$$\frac {dy}{dx}
⇒$$\frac {dy}{dx}x = -sin2y2
⇒$$\frac {dy}{dx}x= -1−cos22y2
⇒$$\frac {dy}{dx}= 1−x2−2