Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Find dydx:Find\ \frac {dy}{dx}:
y=cos1(2x1+x2), 1<x<1y=cos^{-1}(\frac {2x}{1+x^2}),\ -1<x<1

Answer

The given relationship is y = cos-1(2x1+x2)(\frac {2x}{1+x^2})

y = cos-1(2x1+x2)(\frac {2x}{1+x^2})
⇒cosy = 2x1+x2\frac {2x}{1+x^2}
Differentiating this relationship with respect to x,we obtain

ddx\frac {d}{dx}(cos y) = \frac {d}{dx}$$(\frac {2x}{1+x^2})
⇒-sin y dydx\frac {dy}{dx} = (1+x2).ddx(2x)2x.ddx(1+x2)(1+x2)2\frac {(1+x^2).\frac {d}{dx}(2x)-2x.\frac {d}{dx}(1+x^2)}{(1+x^2)^2}
⇒-1cos2y\sqrt{1-cos^2y} dydx\frac {dy}{dx} = (1+x2).22x.2x(1+x2)2\frac {(1+x^2).2-2x.2x}{(1+x^2)^2}
[1(2x1+x2)2[\sqrt {1-(\frac {2x}{1+x^2})^2} dydx\frac {dy}{dx} = -[2(1x2)(1+x2)2][\frac {2(1-x^2)}{(1+x^2)^2}]
(1x2)24x2(1+x2)2\sqrt {\frac {(1-x^2)^2-4x^2}{(1+x^2)^2}} dydx\frac {dy}{dx} = -2(1x2)(1+x2)2\frac {2(1-x^2)}{(1+x^2)^2}
(1x2)2(1+x2)2\sqrt {\frac {(1-x^2)^2}{(1+x^2)^2}} dydx\frac {dy}{dx} = -2(1x2)(1+x2)2\frac {2(1-x^2)}{(1+x^2)^2}
1x21+x2\frac {1-x^2}{1+x^2}.dydx\frac {dy}{dx}= -2(1x2)(1+x2)2\frac {2(1-x^2)}{(1+x^2)^2}
dydx\frac {dy}{dx} = - 21+x2\frac {2}{1+x^2}