Question
Mathematics Question on Continuity and differentiability
Find dxdy:
y=cos−1(1+x22x), −1<x<1
Answer
The given relationship is y = cos-1(1+x22x)
y = cos-1(1+x22x)
⇒cosy = 1+x22x
Differentiating this relationship with respect to x,we obtain
dxd(cos y) = \frac {d}{dx}$$(\frac {2x}{1+x^2})
⇒-sin y dxdy = (1+x2)2(1+x2).dxd(2x)−2x.dxd(1+x2)
⇒-1−cos2y dxdy = (1+x2)2(1+x2).2−2x.2x
⇒[1−(1+x22x)2 dxdy = -[(1+x2)22(1−x2)]
⇒(1+x2)2(1−x2)2−4x2 dxdy = -(1+x2)22(1−x2)
⇒(1+x2)2(1−x2)2 dxdy = -(1+x2)22(1−x2)
⇒1+x21−x2.dxdy= -(1+x2)22(1−x2)
⇒dxdy = - 1+x22